Publications by authors named "Hongzhao Qi"

Aortic dissection/aneurysm (AAD) is a critical and life-threatening condition marked by a lack of effective pharmacological treatments. Gene therapy has emerged as a promising approach to treat AAD and slow its advancement. However, the clinical utility of gene therapy is impeded by significant challenges, including the scarcity of innovative genetic drugs in current medical practices and the absence of a streamlined gene delivery mechanism.

View Article and Find Full Text PDF

Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted immunotherapies improve cancer treatment by countering tumors' ability to suppress the immune system, leveraging advanced biomimetic technologies for precise drug delivery.
  • * The use of dendritic cell (DC) membranes on nanoparticles enhances immune activation by targeting tumor environments and activating T cells effectively.
  • * This review discusses the methods for creating DC membranes, their applications in cancer therapy, and how they could enhance treatment outcomes when combined with other therapies like chemotherapy and photodynamic treatments.
View Article and Find Full Text PDF

Developing biomaterials with high osteogenic properties is crucial for achieving rapid bone repair and regeneration. This study focuses on the application of nanocrystal hydroxyapatite (nHAp) as a drug carrier to load Fu Yuan Huo Xue Decoction (FYHXD), a traditional Chinese medicine derived from Angelica sinensis, aiming to achieve improved efficacy in treating bone diseases such as osteoporosis. Through a facile physical adsorption approach, the FTIR result emerges new characteristic absorption peaks in the range of 1200-950 cm, proving the successful absorption of FYHXD onto the nHAp with a loading efficiency of 39.

View Article and Find Full Text PDF

Ischemic stroke poses significant challenges in terms of mortality and disability rates globally. A key obstacle to the successful treatment of ischemic stroke lies in the limited efficacy of administering therapeutic agents. Leveraging the unique properties of nanoparticles for brain targeting and crossing the blood-brain barrier, researchers have engineered diverse nanoparticle-based drug delivery systems to improve the therapeutic outcomes of ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • - Aortic dissection (AD) is a serious cardiovascular condition that requires immediate treatment, and researchers are exploring the use of nucleic acid drugs for gene-targeting capabilities to help combat it.
  • - This study highlights the effectiveness of an antagomir targeting a specific piRNA (HAAPIR) in reducing vascular remodeling associated with AD, demonstrating improvement in survival rates in mice through key biological pathways (Mef2D and MMP9).
  • - Green tea-derived nanovesicles are used to deliver the antagomir orally, enhancing stability and transport to targeted sites in the aorta, making HAAPIR a promising candidate for AD prevention and treatment, which may open new avenues for cardiovascular therapies.
View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) hold considerable promise for drug delivery due to their natural origin and inherent qualities. However, their clinical application is impeded by two main challenges: low yield and potential side effects. Therefore, it is crucial to obtain substantial quantities of sEVs that adhere to rigorous biosafety standards to ensure successful translation into clinical practice.

View Article and Find Full Text PDF

Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases.

View Article and Find Full Text PDF

Tooth extraction commonly causes uncontrolled bleeding, loss of blood clots, and bacterial infection, leading to the dry socket and bone resorption. Thus, it is highly attractive to design a bio-multifunctional scaffold with outstanding antimicrobial, hemostatic, and osteogenic performances for avoiding dry sockets in clinical applications. Herein, alginate (AG)/quaternized chitosan (Qch)/diatomite (Di) sponges were fabricated via electrostatic interaction, Ca cross-linking, as well as lyophilization methods.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing technology is the ideal tool of the future for treating diseases by permanently correcting deleterious base mutations or disrupting disease-causing genes with great precision and efficiency. A variety of efficient Cas9 variants and derivatives have been developed to cope with the complex genomic changes that occur during diseases. However, strategies to effectively deliver the CRISPR system to diseased cells in vivo are currently lacking, and nonviral vectors with target recognition functions may be the focus of future research.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) are attractive candidates for treating hepatic disorders given their potential to enhance liver regeneration and function. The paracrine paradigm may be involved in the mechanism of MSC-based therapy, and exosomes (Exo) play an important role in this paracrine activity. Hypoxia significantly improves the effectiveness of MSC transplantation.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) has overtaken infectious illnesses as the leading cause of mortality and disability worldwide. The pathology that underpins CVD is atherosclerosis, characterized by chronic inflammation caused by the accumulation of plaques in the arteries. As our knowledge about the microenvironment of blood vessel walls deepens, there is an opportunity to fine-tune treatments to target the mechanisms driving atherosclerosis more directly.

View Article and Find Full Text PDF

Inorganic nanoparticles (INPs) have been paid great attention in the field of oncology in recent past years since they have enormous potential in drug delivery, gene delivery, photodynamic therapy (PDT), photothermal therapy (PTT), bio-imaging, driven motion, etc. To overcome the innate limitations of the conventional INPs, such as fast elimination by the immune system, low accumulation in tumor sites, and severe toxicity to the organism, great efforts have recently been made to modify naked INPs, facilitating their clinical application. Taking inspiration from nature, considerable researchers have exploited cell membrane-camouflaged INPs (CMCINPs) by coating various cell membranes onto INPs.

View Article and Find Full Text PDF

Oral gene therapy has emerged as a potential optimal treatment for ulcerative colitis (UC). Nucleic acid drugs possessing versatility can not only inhibit inflammation but realize colon mucosal healing, fulfilling the clinical objective of UC therapy. However, the effective accumulation and distribution of oral nucleic acid drugs in the colon remain a considerable challenge.

View Article and Find Full Text PDF

Infections induced by bacteria at present are a severe threat to public health. Compared with extracellular bacteria, intracellular bacteria are harder to get rid of and readily induce chronic inflammation as well as autoimmune disorders. As the development of new antibiotics becomes more and more difficult, the construction of new antibiotic dosage forms is one of the optimal choices for the elimination of intracellular bacteria, and, to date, various nanomedicines have been exploited.

View Article and Find Full Text PDF

Extracellular vesicles are cellular secretory particles that can be used as natural drug delivery carriers. They have successfully delivered drugs including chemotherapeutics, proteins, and genes to treat various diseases. Oxidative stress is an abnormal physiological phenomenon, and it is associated with nearly all diseases.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) exhibits a high mortality rate and is the most aggressive subtype of breast cancer. As previous studies have shown that histone deacetylases (HDAC) may represent molecular targets for TNBC treatment, we screened a small library of synthetic molecules and identified a potent HDAC inhibitor (HDACi), YF438, which exerts effective anti-TNBC activity both and . Proteomic and biochemical studies revealed that YF438 significantly downregulated mouse double minute 2 homolog (MDM2) expression.

View Article and Find Full Text PDF

The metabolic enzyme-based arginine deprivation represents a tremendous opportunity to treat argininosuccinate synthetase (ASS1)-deficient tumors. Arginine deiminase (ADI), a typical representative, has aroused great interest. To date, the functional modification of ADI, such as PEGylation, has been applied to improve its weakness significantly, reducing its immunogenicity and extending its blood circulation time.

View Article and Find Full Text PDF

Objective: The healing of osteoporotic fractures in the elderly patients is a difficult clinical problem. Currently, based on the internal fixation of fractures, the available drug treatments mainly focus on either inhibiting osteoclast function, such as bisphosphonate, calcitonin, oestrogen or promoting osteogenesis, such as parathyroid hormones. However, the availability of current antiosteoporotic drugs in promoting osteoporotic fracture healing is limited.

View Article and Find Full Text PDF

Developing an effective nanoplatform to realize 'multi-in-one' is essential to broaden the therapeutic potential of combination therapy. Exosomes are ideal candidates since their intrinsic abilities of integrating multiple contents and functions. However, only limited efforts have been devoted to engineering exosomes to integrate the needed properties, also considering the safety and yield, for tumor-targeted and efficient gene/chemo combination therapy.

View Article and Find Full Text PDF

The introduction of therapeutic antibodies (tAbs) into clinical practice has revolutionized tumor treatment strategies, but their tumor therapy efficiency is still far below expectations because of the rapid degradation and limited tumor accumulation of tAbs. : We developed a nanocapsule-based delivery system to induce the self-augmentation of the enhanced permeability and retention (EPR) effect. This system constantly penetrated across the blood-tumor barrier into the tumor while avoiding the attack of tAbs by the immune system.

View Article and Find Full Text PDF

The use of circulating microRNAs as biomarkers opens up new opportunities for the diagnosis of cardiovascular diseases because of their specific expression profiles. The aim of the present study was to identify circulating microRNAs in human plasma as potential biomarkers of heart failure and related diseases. We used real-time quantitative PCR to screen microRNA in plasma samples from 62 normal controls and 62 heart failure samples.

View Article and Find Full Text PDF

Protein drugs are often loaded on scaffolds with organic coatings to realize a spatiotemporal controlled release. The stability or activity of protein drugs, however, is largely affected by the organic coating, particularly with organic solvents, which can dramatically reduce their delivery efficiency and limit their application scope. In spite of this, little attention has been paid to maintaining the stability of protein drugs in organic coatings, to date.

View Article and Find Full Text PDF

Coronary artery disease (CAD) is one of the biggest threats to human life. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of CAD, indicating the possible role in CAD diagnosis. The present study aimed to explore the expression profile of plasma miRNAs and estimate their value in diagnosis for CAD.

View Article and Find Full Text PDF