Publications by authors named "Hongyun Qi"

The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound , a novel small molecule CDK8/19 inhibitor.

View Article and Find Full Text PDF

HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation.

View Article and Find Full Text PDF

Breast and gynecological cancers are among the leading causes of death in women worldwide, illustrating the urgent need for innovative treatment options. We identified MYT1 as a promising new therapeutic target for breast and gynecological cancer using PandaOmics, an AI-driven target discovery platform. The synthetic lethal relationship of MYT1 in tumor cell lines with CCNE1 amplification enhanced this rationale.

View Article and Find Full Text PDF

Cyclin-dependent kinase 8 (CDK8), as a kinase subunit of the Mediator complex, is involved in the regulation of RNA polymerase II-mediated transcription, thereby modulating multiple signaling pathways and multiple transcription factors involved in oncogenic control. CDK8 deregulation has been implicated in human diseases, particularly in acute myeloid leukemia (AML) and advanced solid tumors, where it has been reported as a putative oncogene. Here, we report the successful optimization of an azaindole series of CDK8 inhibitors that were identified and further progressed through a structure-based generative chemistry approach.

View Article and Find Full Text PDF

DNA damage leads to rapid synthesis of poly(ADP-ribose) (pADPr), which is important for damage signaling and repair. pADPr chains are removed by poly(ADP-ribose) glycohydrolase (PARG), releasing free mono(ADP-ribose) (mADPr). Here, we show that the NUDIX hydrolase NUDT5, which can hydrolyze mADPr to ribose-5-phosphate and either AMP or ATP, is recruited to damage sites through interaction with PARG.

View Article and Find Full Text PDF
Article Synopsis
  • Highland birds, specifically the black-necked crane, adapt to high-altitude environments through changes in their gut microbiota, which has been underexplored.
  • A comparative analysis revealed that black-necked cranes have lower microbiota diversity but higher functional diversity compared to low-altitude crane species, suggesting adaptation to harsh conditions.
  • The study found that altitude has a significant impact on the composition and structure of microbial communities, leading to adaptive changes in both diversity and function of the gut microbiota.
View Article and Find Full Text PDF

It is imperative but challenging to develop non-noble metal-based bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Our work reports a core-shell nanostructure that is constructed by the electrodeposition of ultrathin NiFe-LDH nanosheets (NiFe-LDHNS) on CuSe nanowires, which are obtained by selenizing Cu(OH) nanowires in situ grown on Cu foam. The obtained CuSe@NiFe-LDHNS electrocatalyst provides more exposed edges and catalytic active sites, thus exhibiting excellent OER and HER electrocatalytic performance in alkaline electrolytes.

View Article and Find Full Text PDF

Although stress-induced synthesis of mono(ADP-ribose) (mADPr) and poly(ADP-ribose) (pADPr) conjugates by pADPr polymerase (PARP) enzymes has been studied extensively, the removal and degradation of pADPr, as well as the fate of ADPr metabolites, have received less attention. The observations that stress-induced pADPr undergoes rapid turnover, and that deficiencies in ADPr degradation phenocopy loss of pADPr synthesis, suggest that ADPr degradation is fundamentally important to the cellular stress response. Recent work has identified several distinct families of pADPr hydrolases that can degrade pADPr to release pADPr or mADPr into the cytoplasm.

View Article and Find Full Text PDF