Biomed Environ Sci
October 2024
Objective: In this study, we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.
Methods: Rotary cell culture system was used to construct a simulated microgravity model. GO and KEGG analyses were conducted using the DAVID database.
In this study, the Gram-positive bacterium Bacillus licheniformis T5 was utilized to investigate the impact of rhamnolipid on cell membrane and cell wall, as well as enzyme activity and electron transfer rate within cells. Results indicated that at the optimal concentration of rhamnolipid (200 mg/L), the cell membrane protein and cell wall peptidoglycan content of T5 decreased significantly. Infrared spectrum analysis and ultrastructure observations confirmed these findings, revealing noticeable changes in cell morphology in the presence of rhamnolipid.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2024
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system.
View Article and Find Full Text PDFGut serves as the largest interface between humans and the environment, playing a crucial role in nutrient absorption and protection against harmful substances. The intestinal barrier acts as the initial defense mechanism against non-specific infections, with its integrity directly impacting the homeostasis and health of the human body. The primary factor attributed to the impairment of the intestinal barrier in previous studies has always centered on the gastrointestinal tract itself.
View Article and Find Full Text PDFConventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine.
View Article and Find Full Text PDFMicrogravity is a primary challenge that need to overcome, when human travel to space. Our study provided evidence that Kupffer cells (KCs) are sensitive to simulated microgravity (SMG), and no similar research report has been found in the literature. Using transcriptome sequencing technology, it was showed that 631 genes were upregulated and 801 genes were downregulated in KCs after treatment under SMG for 3 days.
View Article and Find Full Text PDFExposure to microgravity can adversely affect the fitness of astronauts. The integrity of the skin plays a crucial role in protecting against mechanical forces and infections, fluid imbalance, and thermal dysregulation. In brief, the skin wound may cause unknown challenges to the implementation of space missions.
View Article and Find Full Text PDFHepatic macrophages are a complex population of cells that play an important role in the normal functioning of the liver and in liver diseases. Autophagy, as a maintainer of cellular homeostasis, is closely connected to many liver diseases. And its roles are not always beneficial, but manifesting as a double-edged sword.
View Article and Find Full Text PDFWaxy oily sludge (WOS) from petrochemical enterprises has complex components and difficult treatment. Long-term large-scale stacking has seriously threatened human health and the ecological environment. In this paper, a new rapid and effective treatment method combining dispersion and biodegradation in a semi-fluid state was developed for the WOS.
View Article and Find Full Text PDFPhenols and petroleum hydrocarbons were the main contributors to COD in semi-coking wastewater, and their removal was urgent and worthwhile. The microbial strains were selected to construct microbial community for the wastewater treatment. The concentration of phenols was decreased from 2450 ± 1.
View Article and Find Full Text PDFRhodococcus qingshengii strain FF is a soil ubiquitous strain that has a high polycyclic aromatic hydrocarbons (PAHs) biodegradation capability. In this work, phenanthrene was used as a PAH model compound. The accumulated pattern of the metabolites of phenanthrene by strain FF was investigated, and their toxicity to Vibrio fischeri, effect on microbiota diversity of farmland soil and influence on seed of wheat were evaluated.
View Article and Find Full Text PDFYield and cost are two major factors limiting the widespread use of rhamnolipids (RLs). In the present study, waste frying oil (WFO) was used as the sole carbon source to produce environmentally friendly RLs by Pseudomonas aeruginosa NY3. The Plackett-Burman design (PBD) and Box-Behnken design (BBD) methods were used to maximize the production yield of RL.
View Article and Find Full Text PDFLow pH and high salinity characteristic of produced water (PW) posed a big challenge for the direct biological treatment. The immobilization of R. qingshengii strain FF, which degraded petroleum effectively under low pH, and application of immobilized R.
View Article and Find Full Text PDFApplication of biological methods on polycyclic aromatic hydrocarbons (PAHs) treatment is always limited by its low degradation efficiency. In this work, a catalytic oxidation pathway of phenanthrene resulted by extracellular secretions of P. aeruginosa NY3 was proposed.
View Article and Find Full Text PDFProduced water (PW) in oilfield, as the largest waste streams in the oil and gas production, has posed a huge threat to the ecosystem. In this work, an environmentally friendly and recyclable biofilms have been developed for treating PW. We discovered that the cells of P.
View Article and Find Full Text PDFThe aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P.
View Article and Find Full Text PDFAngulin proteins are a group of evolutionally conserved type I transmembrane proteins that contain an extracellular Ig-like domain. In mammals, three angulin proteins have been identified, namely immunoglobulin-like domain containing receptor 1 (ILDR1), immunoglobulin-like domain containing receptor 2 (ILDR2), and lipolysis-stimulated lipoprotein receptor (LSR). All three proteins have been shown to localize at tight junctions (TJs) and are important for TJ formation.
View Article and Find Full Text PDFProtocadherin 15 (PCDH15) is a core component of hair cell tip-links and crucial for proper function of inner ear hair cells. Mutations of gene cause syndromic and nonsyndromic hearing loss. At present, the regulatory mechanisms responsible for the intracellular transportation of PCDH15 largely remain unknown.
View Article and Find Full Text PDFSci Total Environ
January 2017
For further understanding of the roles of small organic acids commonly produced during alkane degradation, glutaric acid was found to be effective for promoting hexadecane degradation by P. aeruginosa NY3. Our results demonstrated that the synchronous metabolism of glutaric acid could increase both the growth rates and hexadecane degradation ability of P.
View Article and Find Full Text PDFAlternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells.
View Article and Find Full Text PDFTo explore the potential of Pseudomonas aeruginosa NY3 for the treatment of highly concentrated crude oil-contaminated water, the immobilization of strain NY3 on the surface of polyurethane foam (PUF), the conditions for using these biofilms and the possibility of recovering the used biofilms were studied. The results demonstrated that the biofilm formation process for strain NY3 was quick and easy. Under optimum conditions, the biomass immobilized on the PUF surface could reach 488.
View Article and Find Full Text PDF