Angew Chem Int Ed Engl
December 2024
Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens.
View Article and Find Full Text PDFThe innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of -carboranes.
View Article and Find Full Text PDFPalladium (Pd)-based single-atom catalysts (SACs) have shown outstanding selectivity for semihydrogenation of alkynes, but most Pd single sites coordinated with highly electronegative atoms (such as N, O, and S) of supports will result in a decrease in the electron density of Pd sites, thereby weakening the adsorption of reactants and reducing catalytic performance. Constructing a rich outer-shell electron environment of Pd single-atom sites by changing the coordination structure offers a novel opportunity to enhance the catalytic efficiency with excellent alkene selectivity. Therefore, in this work, we first propose the in situ preparation of isolated Pd sites encapsulated within Al/Si-rich ZSM-5 structure using the one-pot seed-assisted growth method.
View Article and Find Full Text PDFMetamaterials composed of different geometrical primitives have different properties. Corresponding to the fundamental geometrical forms of line, plane, and surface, beam-, plate-, and shell-based lattice metamaterials enjoy many advantages in many aspects, respectively. To fully exploit the advantages of each structural archetype, we propose a multilayer strategy and topology optimization technique to design lattice metamaterial in this study.
View Article and Find Full Text PDFRecent advances in gene editing and precise regulation of gene expression based on CRISPR technologies have provided powerful tools for the understanding and manipulation of gene functions. Fusing RNA aptamers to the sgRNA of CRISPR can recruit cognate RNA-binding protein (RBP) effectors to target genomic sites, and the expression of sgRNA containing different RNA aptamers permit simultaneous multiplexed and multifunctional gene regulations. Here, we report an intracellular directed evolution platform for RNA aptamers against intracellularly expressed RBPs.
View Article and Find Full Text PDFOverexpression of nectin cell adhesion protein 4 correlates with cancer progression and poor prognosis in many human malignancies. Enfortumab vedotin (EV) is the first nectin-4-targeting antibody-drug conjugate (ADC) approved by the FDA for the treatment of urothelial cancer. However, inadequate efficacy has limited progress in the treatment of other solid tumors with EV.
View Article and Find Full Text PDFThe efficient and selective functionalization of icosahedral carboranes (CBH) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally.
View Article and Find Full Text PDFThe efficient transformation of nitroaromatics to functional molecules such as -heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct -heterocycles including indoles, -hydroxyl oxindoles and -H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C-N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (-HAA) process.
View Article and Find Full Text PDFMolybdenum disulfide (MoS ) is one of the most promising alternatives to the Pt-based electrocatalysts for the hydrogen evolution reaction (HER). However, its performance is currently limited by insufficient active edge sites and poor electron transport. Hence, enormous efforts have been devoted to constructing more active edge sites and improving conductivity to obtain enhanced electrocatalytic performance.
View Article and Find Full Text PDF