A sensitive electrochemical method for detecting enrofloxacin was proposed using carboxylated multi-walled carbon nanotubes-reduced graphene oxide (MWCNT-COOH-RGO) nanocomposites. The MWCNT-COOH-RGO nanocomposites were firstly electrodeposited on a bare electrode, followed by electropolymerization of molecularly imprinted polymers. Enrofloxacin was determined by the mechanisms of direct electrocatalytic oxidation and molecularly imprinted recognition, respectively.
View Article and Find Full Text PDFThe first lncRNA discovered, H19, has been found to participate in the regulation of diverse biological processes, including the pathogenesis of stomach adenocarcinoma. In addition to its oncogenic function in tumor formation, a high level of H19 in tumor tissues has also been reported to be an indicator for poor prognosis. However, although many previous works have investigated the level of H19 as an independent indicator for prognosis, the real value of H19 in predicting survival has rarely been evaluated.
View Article and Find Full Text PDFA novel electrochemical method for detecting fluoride was developed based on gold electrode modified by layer-by-layer (LBL) assembly of poly(3-aminophenylboronic acid)-reduced graphene oxide (PAPBA-RGO) multilayers. The PAPBA-RGO multilayer-modified gold electrode was constructed by using alternating LBL assembly of RGO and PAPBA on a bare gold electrode by one-step electrodeposition. Fluoride was electrochemically determined based on the proposed modified electrode by evaluating the changes in peak current for potassium ferricyanide reduction caused by the conjunction of fluoride and boronic acid groups of PAPBA.
View Article and Find Full Text PDFBackground: The mammalian genome encodes millions of proteins. Although many proteins have been discovered and identified, a large part of proteins encoded by genes are yet to be discovered or fully characterized. In the present study, we successfully identified a host protein C11orf96 that was significantly upregulated after viral infection.
View Article and Find Full Text PDF• We identified one RHD case caused by a new RHDV variant (GI.2) in China through HA, TEM, and genome sequencing. • This is the first study to demonstrate that GI.
View Article and Find Full Text PDFRabbit hemorrhagic disease virus (RHDV) is a member of the Caliciviridae family and cannot be propagated in vitro, which has impeded the progress of investigating its replication mechanism. Construction of an RHDV replicon system has recently provided a platform for exploring RHDV replication in host cells. Here, aided by this replicon system and using two-step affinity purification, we purified the RHDV replicase and identified its associated host factors.
View Article and Find Full Text PDFElderly people and patients with comorbidities are at higher risk of COVID-19 infection, resulting in severe complications and high mortality. However, the underlying mechanisms are unclear. In this study, we investigate whether miRNAs in serum exosomes can exert antiviral functions and affect the response to COVID-19 in the elderly and people with diabetes.
View Article and Find Full Text PDFSmall ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus.
View Article and Find Full Text PDFThe mitochondrial antiviral-signaling protein (MAVS, also known as VISA, IPS-1, or CARDIF) plays an essential role in the type I interferon (IFN) response and in retinoic acid-inducible gene I (RIG-I) mediated antiviral innate immunity in mammals. In this study, the caprine MAVS gene (caMAVS, 1566 bp) was identified and cloned. The caMAVS shares the highest amino acid similarity (98.
View Article and Find Full Text PDFRNAi therapy has undergone two stages of development, direct injection of synthetic siRNAs and delivery with artificial vehicles or conjugated ligands; both have not solved the problem of efficient in vivo siRNA delivery. Here, we present a proof-of-principle strategy that reprogrammes host liver with genetic circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes and facilitate the in vivo delivery of siRNAs through circulating exosomes. By combination of different genetic circuit modules, in vivo assembled siRNAs are systematically distributed to multiple tissues or targeted to specific tissues (e.
View Article and Find Full Text PDFRabbit hemorrhagic disease virus (RHDV), a member of Caliciviridae family, causes a highly contagious disease in rabbits. The RHDV replication mechanism is poorly understood due to the lack of a suitable culture system in vitro. This study identified RHDV 5' and 3' extremities (Ex) RNA binding proteins from the rabbit kidney cell line RK-13 based on a pull-down assay by applying a tRNA scaffold streptavidin aptamer.
View Article and Find Full Text PDFRabbit hemorrhagic disease (RHD) is an acute, inflammatory, septic, and devastating infectious disease caused by Rabbit hemorrhagic disease virus (RHDV), which poses a serious threat to the rabbit industry. RHDV2 (GI.2/RHDVb), a recently reported new variant could cause RHD in wild populations, but also RHDV-vaccinated rabbits.
View Article and Find Full Text PDF