Publications by authors named "Hongyu Zuo"

Article Synopsis
  • Friction in physical chemistry is crucial for improving membrane performance, particularly by reducing resistance to solvent flow and enhancing water transport at the nanoscale.
  • A new porous membrane inspired by the Tillandsia leaf structure was developed using covalent organic frameworks (COFs), featuring a rough hydrophilic inlet and hydrophobic pore channels to minimize solvent pressure and friction.
  • The resulting COF membranes effectively harvested fog from the air, achieving a high water harvesting rate while also filtering out small pollutants, showcasing their potential for efficient fluid transport and collection.
View Article and Find Full Text PDF

Gradients play a pivotal role in membrane technologies, e.g., osmotic energy conversion, desalination, biomimetic actuation, selective separation, and more.

View Article and Find Full Text PDF

With the rapid development of energy storage technology, the operation of portable and wearable devices is inseparable from high energy density power supplies. However, the demand for high performance supercapacitors in movable smart electronics is still restrained by their insufficient areal capacitance and limited power/energy densities. In addition, some electroactive materials, including metal oxides, conductive polymers, graphene, porous carbons, etc.

View Article and Find Full Text PDF

Engineering of conjugated microporous polymers (CMPs) with high porosity, redox activity, and electronic conductivity is of significant importance for their practical applications in electrochemical energy storage. Aminated-multiwall carbon nanotubes (NH -MWNT) are utilized to modulate the porosity and electronic conductivity of polytriphenylamine (PTPA), which is synthesized via Buchwald-Hartwig coupling reaction of tri(4-bromophenyl)amine and phenylenediamine as constitutional units in a one-step in situ polymerization process. Compared to PTPA, the specific surface area of core-shell PTPA@MWNTs has been greatly improved from 32 to 484 m  g .

View Article and Find Full Text PDF

The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability.

View Article and Find Full Text PDF

Since discovered in 2007, conjugated microporous polymers (CMPs) have been developed for numerous applications including gas adsorption, sensing, organic and photoredox catalysis, energy storage, etc. While featuring abundant micropores, the structural rigidity derived from CMPs' stable π-conjugated skeleton leads to insolubility and thus poor processability, which severely limits their applicability, e.g.

View Article and Find Full Text PDF

Capturing volatile radioactive nuclides including iodine (I or I ) is one of the major problems to be solved for environmental sustainability. Multiple types of functional microporous materials such as metal organic frameworks and covalent organic frameworks have been constructed for iodine emission control. However, most of the microporous materials are limited by their weak binding force with iodine and low stability, leading to low capture efficiencies.

View Article and Find Full Text PDF

Chronical exposure to volatile acetone could damage to the liver and kidney or nerve, and cause inflammation. Design of novel materials for the sensitive and selective detection of acetone is of great importance. We report on a europium (Eu)-containing covalent organic framework (DhaTab-COF-EuIL) synthesized via a Schiff-base reaction between 2,5-dihydroxyterephthalaldehyde (Dha) and 1,3,5-tris(4-aminophenyl)benzene (Tab) followed by an ionic liquid (IL)-modification and then ion displacement.

View Article and Find Full Text PDF