While a large body of evidence supports the view that ipsilateral motor cortex may make an important contribution to normal movements and to recovery of function following cortical injury (Chollet et al. 1991; Fisher 1992; Caramia et al. 2000; Feydy et al.
View Article and Find Full Text PDFHigh-frequency, long-duration intracortical microstimulation (HFLD-ICMS) is increasingly being used to deduce how the brain encodes coordinated muscle activity and movement. However, the full movement repertoire that can be elicited from the forelimb representation of primary motor cortex (M1) using this method has not been systematically determined. Our goal was to acquire a comprehensive M1 forelimb representational map of movement endpoints elicited with HFLD-ICMS, using stimulus parameters optimal for evoking stable forelimb spatial endpoints.
View Article and Find Full Text PDFHigh-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys.
View Article and Find Full Text PDF