Publications by authors named "Hongyu Ge"

Large-scale electron microscopy (EM) has enabled the reconstruction of brain connectomes at the synaptic level by serially scanning over massive areas of sample sections. The acquired big EM data sets raise the great challenge of image mosaicking at high accuracy. Currently, it simply follows the conventional algorithms designed for natural images, which are usually composed of only a few tiles, using a single type of keypoint feature that would sacrifice speed for stronger performance.

View Article and Find Full Text PDF

A smartphone-based sensitive, rapid, label-free and high-throughput detection platform for Escherichia coli O157:H7 was established. The specific recognition capability of this platform was dependent of the aptamer modified on the silica photonic microsphere (SPM), whose structural colour was utilized for the quantification of the target bacterium. Gold nanoparticles and silver staining technique were employed to improve the sensitivity of the detection platform.

View Article and Find Full Text PDF

Background: Severe aplastic anemia (SAA) is a syndrome of severe bone marrow failure due to hyperfunction of CD8+ T cells. While, the genetic background of SAA is still unknown. In this study, we tried to explore the possible genetic variants in CD8+ T cells of SAA patients.

View Article and Find Full Text PDF

In the macro/micro dual-drive rotary system, the micro-drive system compensates for the position error of the macro-drive system. To realize the sub-arc-second (i.e.

View Article and Find Full Text PDF

A direct hydride transfer mechanism with three cascade cycles for the conversion of carbon dioxide and dihydrogen to methanol (CO + 3H → CHOH + HO) catalyzed by a half-sandwich cobalt complex [Cp*Co(bpy-Me)OH] (1) is proposed based on density functional theory calculations. The formation of methanediol via hydride transfer from Co to formic acid (4 → TS) is the rate-determining step with a total barrier of 26.0 kcal/mol in free energy.

View Article and Find Full Text PDF

Endoscopic optical coherence tomography (OCT) devices are capable of generating high-resolution images of esophageal structures at high speed. To make the obtained data easy to interpret and reveal the clinical significance, an automatic segmentation algorithm is needed. This work proposes a fast algorithm combining sparse Bayesian learning and graph search (termed as SBGS) to automatically identify six layer boundaries on esophageal OCT images.

View Article and Find Full Text PDF

Nanotechnology has been studied to improve drug delivery and cancer treatment. The aim of this study is to introduce amino groups into graphene oxide (GO) to form aminated fumed graphene (GO-ADH) and combine GO-ADH with carboxymethyl cellulose (CMC) to produce GO-CMC complex as a drug carrier matrix. The anti-cancer drug small molecule doxorubicin hydrochloride (DOX) was bond to GO-CMC by π-π bond interaction and hydrogen bonding to form GO-CMC/DOX drug loading system.

View Article and Find Full Text PDF

Density functional theory study of the hydrogenation of carbon dioxide to methanol catalyzed by iron, cobalt, and manganese cyclopentadienone complexes reveals a self-promoted mechanism, which features a methanol- or water-molecule-assisted proton transfer for the cleavage of H . The total free energy barrier of the formation of methanol from CO and H catalyzed by Knölker's iron cyclopentadienone complex, [2,5-(SiMe ) -3,4-(CH ) (η -C COH)]Fe(CO) H, is 26.0 kcal mol in the methanol solvent.

View Article and Find Full Text PDF

Collagen peptide (COP) grafted N-succinyl chitosan (NSC) was prepared by using microbial transglutaminase (MTGase) as biocatalyst. The catalyzed reaction displayed high efficiency, high selectivity, mild reaction condition and environmental friendliness. The degree of substitution (DS) of N-succinyl chitosan-collagen peptide (NSC-COP)depended on the reaction time, the reaction temperature, the mass ratio of COP to NSC and the mass ratio of MTGase to NSC.

View Article and Find Full Text PDF

The preparation of aminoethyl hydroxypropyl starch collagen peptide (AEHPS-COP) was via an enzyme-catalyzed reaction between amino groups in aminoethyl hydroxypropyl starch (AEHPS) and γ-carboxamide groups in collagen peptide (COP) by using microbial transglutaminase (MTGase) as biocatalyst. As an intermediate reactant, AEHPS was synthesized from hydroxypropyl starch (HPS) and 2-chloroethylamine hydrochloride (CEH). The chemical structures of HPS, AEHPS and AEHPS-COP were characterized by Fourier transform infrared spectroscopy (FT-IR) and C nuclear magnetic resonance (C NMR).

View Article and Find Full Text PDF

A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water.

View Article and Find Full Text PDF

The biomedical applications of graphene-based materials, including drug delivery, have grown rapidly in the past few years. The aim of this present study is to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release and targeted delivery. Graphene oxide (GO) was first prepared from purified natural graphite according to a modified Hummers' method.

View Article and Find Full Text PDF

Collagen peptide (COP) had been grafted to hydroxypropyl chitosan (HPCS) by using microbial transglutaminase (MTGase) as biocatalyst. HPCS was synthesized from chitosan and propylene oxide under alkali condition. The chemical structures of derivative were characterized by FT-IR and H NMR spectroscopy.

View Article and Find Full Text PDF

A series of cobalt and manganese cyclopentadienone complexes are proposed and examined computationally as promising catalysts for hydrogenation of CO to formic acid with total free energies as low as 20.0 kcal mol in aqueous solution. Density functional theory study of the newly designed cobalt and manganese complexes and experimentally reported iron cyclopentadienone complexes reveals a stepwise hydride transfer mechanism with a water or a methanol molecule assisted proton transfer for the cleavage of H as the rate-determining step.

View Article and Find Full Text PDF

Polysaccharide hydrogels have been widely used as biomaterials in biomedical field. In this article, composite hydrogels were prepared through the Schiff-base reaction between the aldehyde of oxidized konjac glucomannan (OKGM) and the amino of carboxymethyl chitosan (CMCS). Meanwhile, different amount of graphene oxide (GO) was added as nano-additive.

View Article and Find Full Text PDF

The ratcheting deformation of articular cartilage can produce due to the repeated accumulations of compressive strain in cartilage. The aim of this study was to investigate the ratcheting behavior of articular cartilage under cyclic compression. A series of uniaxial cyclic compression tests were conducted for online soaked and unsoaked cartilage samples and the effects of stress variation and stress rate on ratcheting behavior of cartilage were investigated.

View Article and Find Full Text PDF

Objective: Genomic loci encoding miR-204, which was predicted to target brain-derived neurotrophic factor (BDNF), were frequently lost in multiple cancer, including epithelial ovarian cancer (EOC). In this study, we aimed to find out the influence of miR-204 expression level on EOC cell anoikis sensitivity and to explore possible mechanisms of this process.

Methods: First, we screened EOC cells, which maintain anoikis resistance forming an anoikis pattern.

View Article and Find Full Text PDF