Orexin signaling, known to modulate arousal and vigilance, is also involved in nociception as orexin neurons project to regions of the brain and spinal cord involved in pain processing, and the administration of orexin peptides can alter pain response in a wide range of preclinical models. Pharmacological treatment with the potent, selective and structurally distinct dual orexin receptor antagonists (ORAs) DORA-12 and DORA-2 significantly reduced pain responses during both phases I and II of the mouse formalin pain model and significantly reversed hyperalgesia in the rat complete Freund's adjuvant pain model, respectively. Significant antinociceptive effects of DORA-12 in the formalin model were also observed in orexin 1 receptor (OX1R) knockout mice, but not orexin 2 receptor (OX2R) or OX1R/OX2R double knockout mice.
View Article and Find Full Text PDFBackground: Safe and effective treatment for chronic inflammatory and neuropathic pain remains a key unmet medical need for many patients. The recent discovery and description of the transient receptor potential family of receptors including TRPV1 and TRPA1 has provided a number of potential new therapeutic targets for treating chronic pain. Recent reports have suggested that TRPA1 may play an important role in acute formalin and CFA induced pain.
View Article and Find Full Text PDFEstablishment of stable cell lines that constitutively express Ca(2+) channels at high density and that are useful for in vitro studies may be complicated by problems with seal quality and duration during whole-cell patch-clamp electrophysiology. The current studies describe the generation and characterization of cells that express the human alpha1H T-type Ca(2+) channel under the control of a tetracycline-inducible expression system. Western blot and immunostaining studies revealed that expression of the alpha1H protein occurred only in the presence of tetracycline.
View Article and Find Full Text PDF