In light of the crucial role of marine ecosystems and the escalating environmental conservation challenges, it is essential to conduct marine monitoring to help implement targeted environmental protection measures efficiently. Energy harvesting technologies, particularly triboelectric nanogenerators (TENGs), have great potential for prolonging the lifespan and enhancing the reliability of sensors in remote areas. However, the high internal resistance, low current, and friction-induced abrasion issues of TENGs limit their performance in practical applications.
View Article and Find Full Text PDFSound wave is an extensively existing mechanical wave, especially in marine and industrial plants where low-frequency acoustic waves are ubiquitous. The effective collection and utilization of sound waves provide a fresh new approach to supply power for the distributed nodes of the rapidly developing Internet of Things technology. In this paper, a novel acoustic triboelectric nanogenerator (QWR-TENG) was proposed for efficient low-frequency acoustic energy harvesting.
View Article and Find Full Text PDFUnderwater communication is a critical and challenging issue, on account of the complex underwater environment. This study introduces an underwater wireless communication approach via Maxwell's displacement current generated by a triboelectric nanogenerator. Underwater electric field can be generated through a wire connected to a triboelectric nanogenerator, while current signal can be inducted in an underwater receiver certain distance away.
View Article and Find Full Text PDFHarvesting acoustic energy in the environment and converting it into electricity can provide essential ideas for self-powering the widely distributed sensor devices in the age of the Internet of Things. In this study, we propose a low-cost, easily fabricated and high-performance coniform Helmholtz resonator-based Triboelectric Nanogenerator (CHR-TENG) with the purpose of acoustic energy harvesting. Output performances of the CHR-TENG with varied geometrical sizes were systematically investigated under different acoustic energy conditions.
View Article and Find Full Text PDF