Publications by authors named "Hongying Gang"

Aims: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKβ suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined.

Methods And Results: Herein, we identify a novel signalling axis that functionally connects IKKβ and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2.

View Article and Find Full Text PDF

Background: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival.

View Article and Find Full Text PDF

Aims: The chemotherapy drug doxorubicin (Dox) is commonly used for treating a variety of human cancers; however, it is highly cardiotoxic and induces heart failure. We previously reported that the Bcl-2 mitochondrial death protein Bcl-2/19kDa interaction protein 3 (Bnip3), is critical for provoking mitochondrial perturbations and necrotic cell death in response to Dox; however, the underlying mechanisms had not been elucidated. Herein, we investigated mechanism that drives Bnip3 gene activation and downstream effectors of Bnip3-mediated mitochondrial perturbations and cell death in cardiac myocytes treated with Dox.

View Article and Find Full Text PDF

The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.

View Article and Find Full Text PDF

Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death.

View Article and Find Full Text PDF

Myocardial ischemia and angiotensin II activate the tumor suppressor p53 protein, which promotes cell death. Previously, we showed that the Bcl-2 death gene Bnip3 is highly induced during ischemia, where it triggers mitochondrial perturbations resulting in autophagy and cell death. However, whether p53 regulates Bnip3 and autophagy is unknown.

View Article and Find Full Text PDF

Gene transcription is regulated by post-translation modifications. Histone deacetylases (HDACs) remove acetyl groups from histone and non-histone factors inhibiting transcription. Proinflammatory cytokines such as TNFα activate the canonical nuclear factor-κB (NF-κB) pathway.

View Article and Find Full Text PDF

Background: Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKβ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy.

View Article and Find Full Text PDF

Rationale: Alternative splicing provides a versatile mechanism by which cells generate proteins with different or even antagonistic properties. Previously, we established hypoxia-inducible death factor Bnip3 as a critical component of the intrinsic death pathway.

Objective: To investigate alternative splicing of Bnip3 pre-mRNA in postnatal ventricular myocytes during hypoxia.

View Article and Find Full Text PDF

A delicate balance exists between cell growth and cell death. In the context of the adult myocardium, inappropriate or inordinate cell loss through an apoptotic process may profoundly influence cardiac structure, function, or both given the limited and meager ability of the heart for repair after injury. Earlier work by the authors' laboratory identified a close relation between cell cycle factor E2F-1 and hypoxia-inducible factor Bnip3 as the key regulator of apoptosis and autophagy in ventricular myocytes.

View Article and Find Full Text PDF

Autophagy is a highly orchestrated cellular process by which proteins and organelles are degraded via an elaborate lysosomal pathway to generate free amino acids and sugars for ATP during metabolic stress. At present, the exact role of autophagy in the heart is highly debated but suggested to play a key role in regulating cell turnover in cardiomyopathies and heart failure. The signaling pathways and molecular effectors that govern autophagy are incomplete, as are the mechanisms that determine whether autophagy promotes or prevents cell death.

View Article and Find Full Text PDF

The transcription factor E2F-1 drives proliferation and death, but the mechanisms that differentially regulate these divergent actions are poorly understood. The hypoxia-inducible death factor Bnip3 is an E2F-1 target gene and integral component of the intrinsic mitochondrial death pathway. The mechanisms that govern Bnip3 gene activity remain cryptic.

View Article and Find Full Text PDF

The inactivation gating of hERG channels is important for the channel function and drug-channel interaction. Whereas hERG channels are highly selective for K+, we have found that inactivated hERG channels allow Na+ to permeate in the absence of K+. This provides a new way to directly monitor and investigate hERG inactivation.

View Article and Find Full Text PDF

The use of cocaine causes cardiac arrhythmias and sudden death. Blockade of the cardiac potassium channel human ether-á-go-go-related gene (hERG) has been implicated as a mechanism for the proarrhythmic action of cocaine. hERG encodes the pore-forming subunits of the rapidly activating delayed rectifier K(+) channel (I(Kr)), which is important for cardiac repolarization.

View Article and Find Full Text PDF

Many commonly used medications can cause long QT syndrome and thus increase the risk of life-threatening arrhythmias. High-affinity human Ether-à-go-go-related gene (HERG) potassium channel blockade by structurally diverse compounds is almost exclusively responsible for this side effect. Understanding drug-HERG channel interactions is an important step in avoiding drug-induced long QT syndromes.

View Article and Find Full Text PDF

Objective: To investigate the presentation of a neutralization epitope-containing peptide antigen of hepatitis E virus (HEV) on chimeric virus-like particles (VLPs) of hepatitis B surface antigen (HBsAg).

Methods: The gene fragment corresponding to amino acids (aa) 551-607 (HEnAg) of HEV capsid protein, which contains the only neutralization epitope identified to date, was fused via a synthetic glycine linker in frame with the gene of HBsAg. The resulted fusion gene was then integrated through transformation into the genome of Pichia pastoris under the control of a methanol-induced alcohol oxidase 1 (AOX1) promoter and expressed intracellularly.

View Article and Find Full Text PDF