Electrowetting-driven digital (droplet-based) microfluidics has a tremendous impact on lab-on-a-chip applications. However, the biofouling problem impedes the real applications of such digital microfluidics. Here we report antifouling digital microfluidics by introducing lubricant infused porous film to electrowetting (more exactly, electrowetting on dielectric or EWOD).
View Article and Find Full Text PDFDespite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons.
View Article and Find Full Text PDFGenerating, splitting, transporting, and merging droplets are fundamental and critical unit operations for digital (droplet-based) microfluidics. State-of-the-art digital microfluidics performs such operations commonly using electrowetting-on-dielectric (EWOD) in the typical configuration of two parallel channel plates. This paper presents such operations using dielectrowetting (derived from liquid dielectrophoresis), not EWOD, with an array of interdigitated electrodes.
View Article and Find Full Text PDF