Ovarian aging results in reproductive disorders and infertility in mammals. Previous studies have reported that the ferroptosis and autophagy caused by oxidative stress may lead to ovarian aging, but the mechanisms remain unclear. In this study, we compared the morphological characteristics between the aged and young ovaries of pigs and found that the aged ovaries were larger in size and showed more corpora lutea.
View Article and Find Full Text PDFIn female mammals, the proliferation and apoptosis of granulosa cells (GCs) have been shown to determine the fate of follicles. DNA methyltransferases (DNMTs) and have been reported to be involved in the survival of GCs and follicular growth. However, the molecular mechanisms enabling DNMTs to regulate the expression of to participate in follicular growth are unclear.
View Article and Find Full Text PDFAbnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity.
View Article and Find Full Text PDFDNA methylation and long noncoding RNAs (lncRNAs) exhibit an indispensable role in follicular development. However, the specific mechanisms regarding lncRNAs mediated by DNA methylation in follicular development remain unclearly. In this study, we found that inhibiting the expression of DNMT1 promoted granulosa cells (GCs) apoptosis to inhibit follicular development.
View Article and Find Full Text PDFThe present study aimed to investigate the role of microRNA (miR)‑125a in the development of pneumonitis inpatients with non‑small‑cell lung cancer that received radiotherapy. In addition, the study aimed to determine how the miR‑125a affects its target, transforming growth factor β (TGFβ). Bioinformatics tools were used to identify a potential miR‑125a binding site in the 3'untranslated region of TGFβ, which was subsequently confirmed using a dual‑luciferase reporter system.
View Article and Find Full Text PDF