Publications by authors named "Hongyan Mou"

Paper relics, as carrieres of historical civilization's records and inheritance, could be severely acidic and brittle over time. In this study, the multi-functional dispersion of nanometer magnesium oxide (MgO) carried by 3-aminopropyl triethoxysilane-modified bacterial cellulose (KH550-BC) was applied in the impregnation process to repair aged paper, aiming at solving the key problems of anti-acid and strength recovery in the protection of ancient books. The KH550-BC/MgO treatment demonstrated enhanced functional efficacy in repairing aged paper, attributed to the homogeneous and stable distribution of MgO within the nanofibers of BC networks, with minimal impact on the paper's wettability and color.

View Article and Find Full Text PDF

The aging of paper seriously threatens the service life of cultural heritage documents. Bacterial cellulose (BC), which has a good fiber aspect ratio and is rich in hydroxyl groups, is suitable for strengthening aged paper. However, a single BC added was not ideal for paper restoration, since only strengthening was not able to resist the persistent acidification of ancient book.

View Article and Find Full Text PDF

Enzymatic hydrolysis is important for lignocellulosic biomass conversion into fermentable sugars. However, the nonproductive adsorption of enzyme on lignin was major hinderance for the enzymatic hydrolysis efficiency. In this study, non-productive adsorption mechanism of cellulase component cellobiohydrolase (CBH) onto lignin was specific investigated.

View Article and Find Full Text PDF

Paper-based electrodes are of special interest for the industry due to their degradability, low cost, ion accessibility, and flexibility. However, the poor dispersibility and stability of loading conductive fillers, for example, carbon nanotubes (CNTs), limit their applications. In this study, bacterial cellulose (BC) was embedded within the cellulosic fiber matrix to prepare a paper substrate with a dual fiber matrix structure.

View Article and Find Full Text PDF

The research of cost-efficient lignin-based adsorbents is a practical strategy for the recovery of cellulase. In this study, alkali lignin was modified to increase the phenolic hydroxyl (Ph-OH) content for cellulase adsorption applications. After phenolation, compared with the lignin reference, the maximum adsorption cellulase capacity of lignoresorcinol (LigR) and lignopyrogallol (LigP) was improved from 76.

View Article and Find Full Text PDF

The objective of this study was to investigate the effects of organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of eucalyptus. The chemical composition of the fiber surface was analyzed using X-ray photoelectron spectroscopy (XPS) to determine the surface characteristics of pretreated eucalyptus. Other than the significant decrease of surface coverage by lignin, hydrotropic pretreatment was more effective in removing the lignin and xylose from fiber cell walls than organosolv pretreatment.

View Article and Find Full Text PDF

In this work, dilute alkaline and alkaline peroxide pretreatments were conducted in comparison with hydrotropic pretreatment to improve the delignification of bagasse prior to enzymatic hydrolysis. The surface chemical composition of bagasse after pretreatments was investigated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface distribution of lignin and extractives on the bagasse fiber was significantly changed by dilute alkaline, alkaline peroxide, and hydrotropic pretreatments.

View Article and Find Full Text PDF

The surface chemistry of milled birch and pine wood pretreated by ionic liquid, hydrothermal and hydrotropic methods, followed by enzymatic hydrolysis was studied in this work. Surface coverage by lignin was measured by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to describe the surface chemical composition after pretreatment in detail, and the morphology after pretreatment was investigated by FE-SEM. Ionic liquid (1-ethyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium chloride) pretreatment at room temperature made the samples swell but did not dissolve the wood.

View Article and Find Full Text PDF