Ischemia and hypoxia activate astrocytes into reactive types A1 and A2, which play roles in damage and protection, respectively. However, the function and mechanism of A1 and A2 astrocyte exosomes are unknown. After astrocyte exosomes were injected into the lateral ventricle, infarct volume, damage to the blood-brain barrier (BBB), apoptosis and the expression of microglia-related proteins were measured.
View Article and Find Full Text PDFAims: Matrix metalloproteinases 9 (MMP9) plays a role in the destruction of blood-brain barrier (BBB) and cell death after cerebral ischemic/reperfusion (I/R). Esculentoside H (EH) is a saponin found in Phytolacca esculenta. It can block JNK1/2 and NF-κB signal mediated expression of MMP9.
View Article and Find Full Text PDFDiabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus that leads to an increased risk of cognitive impairment and dementia. However, the molecular mechanism underlying DACD has not been elucidated, and a promising therapy for this disease remains to be established. Hydrogen sulfide (HS), a significant antioxidative and anti-inflammatory gasotransmitter, has emerged as a neuroprotective agent.
View Article and Find Full Text PDFBackground: Ischemic stroke represents a major factor causing global morbidity and death. Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (Exos) have important effects on treating ischemic stroke. Here, we investigated the therapeutic mechanism by which BMSC-derived exosomal miR-193b-5p affects ischemic stroke.
View Article and Find Full Text PDFThe high levels of serum calcium and cholesterol are the important risk factors of cardiovascular disease (CVD), which frequently influence each other during the development of CVD. However, few studies have examined their temporal relationship to confirm the precursor, and it is still largely unknown whether and how their temporal relationship would influence the development of CVD. This study aimed to establish the temporal relationship between the changes in serum calcium and cholesterol using the longitudinal cohort data, and examine whether this temporal relationship influenced the arterial elasticity indicated by brachial-ankle pulse wave velocity (baPWV).
View Article and Find Full Text PDFLeucine-rich α2-glycoprotein1 (LRG1), a pleiotropic protein, plays a pathogenic role in multiple human diseases. However, its pathophysiological function in ischemia/reperfusion injury remains unclear. In this study, we discussed the function and mechanism of LRG1 in acute ischemic stroke from both basic and clinical research points of view.
View Article and Find Full Text PDFCell Physiol Biochem
September 2018
Background/aims: This study investigated the role of the microRNA miR-298 and its target Act1 in ischemic stroke.
Methods: Cell viability was assessed with the 3-(4,5-dimethythiazol-2- yl)-2,5-diphenyl tetrazolium bromide assay. Apoptotic cells were detected by flow cytometry, and mRNA and protein expression were assessed by quantitative real-time PCR and western blotting, respectively.
Aims: The aim of the study is to evaluate the neuroprotective effects of olfactory ensheathing cells (OECs) with the overexpression of nuclear receptor-related factor 1 (Nurr1) and neurogenin 2 (Ngn2) in experimental models of Parkinson's disease (PD) and to elucidate the potential mechanism underlying the neuroprotective effects of OECs-Nurr1-Ngn2.
Materials And Methods: In vitro study, OECs-Nurr1-Ngn2 conditioned medium (CM) was added to MPP-treated PC12 cells for 24h, and then the viability of PC12 cells, oxidative stress and apoptosis were detected. In vivo study, 48 male Sprague-Dawley (SD) rats were randomly divided into four groups.
Objective: This study investigated the role of miR-215 and nuclear factor-κB activator (Act)1 and their mechanisms of action in ischemic stroke.
Methods: Cell viability was examined with the 3-(4,5-dimethythiazol-. 2-yl)-2,5-diphenyl tetrazolium bromide assay; cell apoptosis was detected by flow cytometry; and mRNA and protein expression was assessed by quantitative real-time PCR and western blotting, respectively.
Mater Sci Eng C Mater Biol Appl
December 2017
We developed a highly efficient optical thermometer based on intensity ratio of upconversion green fluorescence of Er/Yb-codoped NaYF microcrystals. The sensor consists simply of a 980nm laser diode, one narrow-band interference filter, two lenses, one Si-photocell and one multimeter, while being without use of spectrometer and additional electronics. The device not only has a simple, compact structure (hence a low cost), but also displays highly efficient sensing performance, characterized by large signal-to-noise ratio due to strong fluorescence intensity, high thermal resolution and sensitivity, which have the values 1.
View Article and Find Full Text PDF