Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2023
Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method.
View Article and Find Full Text PDFAmmonium persulfate (APS) was able to produce carboxylated cellulose nanocrystals (CNCs-COOH) directly from the raw materials of cellulose. However, the industrial production of CNCs-COOH by this method is obstructed by the lower preparation efficiency. Herein, by the activation via N,N,N',N'-tetramethylethylenediamine (TMEDA) and ultrasonic assisted disintegration, modified APS method to extract CNCs-COOH from pulp was presented.
View Article and Find Full Text PDF