Publications by authors named "Hongwu Xu"

Background: Educational attainment (EA) as a stable indicator of socioeconomic status has been confirmed to affect intracerebral hemorrhage (ICH), but the mechanism relating EA and ICH is still unknown.

Aim: To explore the causal relationship between EA and ICH through a bidirectional and two-step Mendelian randomization (MR) study.

Methods: Using summary-level Genome-wide Association Study using GWAS data FROM CASES AND CONTROLS of European ancestry, we performed bidirectional and two-step MR analyses to explore the causal relationship between educational attainment and ICH to understand the mediating influence of risk factors in this process.

View Article and Find Full Text PDF

Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content.

View Article and Find Full Text PDF

Molten salt reactors (MSRs) are a promising alternative to conventional nuclear reactors as they may offer more efficient fuel utilization, lower waste generation, and improved safety. The state of knowledge of the properties of liquid salts is far from complete. In order to develop the MSR concept, it is essential to develop a fundamental understanding of the thermodynamic properties, including the heat capacities (Cp) and enthalpies of mixing (ΔHmix), of molten salts at MSR operating conditions.

View Article and Find Full Text PDF

Uranium trichloride (UCl) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl, at both ambient condition and high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes () of UCl exhibit a negative temperature derivative ((∂ν/∂)) with increasing temperature.

View Article and Find Full Text PDF

Introduction: Primary brainstem hemorrhage (PBSH) is the most fatal subtype of intracerebral hemorrhage and is associated with poor prognosis. We aimed to develop a prediction model for predicting 30-day mortality and functional outcome in patients with PBSH.

Methods: We reviewed records of 642 consecutive patients with first-time PBSH from three hospitals between 2016 and 2021.

View Article and Find Full Text PDF

The structure of the uranyl aqua ion (UO) and a number of its inorganic complexes (specifically, UOCl, UOCl, UOSO, [Formula: see text] , [Formula: see text] and UOOH) have been characterised using X-Ray absorption spectroscopy/extended X-Ray absorption fine structure (XAS/EXAFS) at temperatures ranging from 25 to 326 ºC. Results of ab initio molecular dynamics (MD) calculations are also reported for uranyl in chloride and sulfate-bearing fluids from 25 to 400 ºC and 600 bar to 20 kilobar (kb). These results are reported alongside a comprehensive review of prior structural characterisation work with particular focus given to EXAFS works to provide a consistent and up-to-date view of the structure of these complexes under conditions relevant to U mobility in ore-forming systems and around high-grade nuclear waste repositories.

View Article and Find Full Text PDF

Background: The centrosome is one of the most important non-membranous organelles regulating microtubule organization and progression of cell mitosis. The coiled-coil alpha-helical rod protein 1 (CCHCR1, also known as HCR) gene is considered to be a psoriasis susceptibility gene, and the protein is suggested to be localized to the P-bodies and centrosomes in mammalian cells. However, the exact cellular function of HCR and its potential regulatory role in the centrosomes remain unexplored.

View Article and Find Full Text PDF

Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures.

View Article and Find Full Text PDF

MXenes are ultra-thin two-dimensional layered early transition-metal carbides and nitrides with potential applications in various emerging technologies, such as energy storage, water purification, and catalysis. MXenes are synthesized from the parent MAX phases with different etching agents [hydrofluoric acid (HF) or fluoride salts with a strong acid] by selectively removing a more weakly bound crystalline layer of Al or Ga replaced by surface groups (-O, -F, -OH, etc.).

View Article and Find Full Text PDF

Background: Hexokinase 2 (HK2) is an enzyme that catalyses the conversion of glucose to glucose-6-phosphate, which has been found to be associated with malignant tumour growth. However, the potential immunological and clinical significance of HK2, especially in terms of prognostic prediction for patients with glioma, has not been fully elucidated.

Methods: To investigate the expression, immunological and clinical significance of HK2 in patients with glioma, several databases, including ONCOMINE, TIMER2.

View Article and Find Full Text PDF

Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios.

View Article and Find Full Text PDF

Cystatin C (CysC) has been found to be associated with hemorrhagic and ischemic stroke in many studies. However, the association between CysC level and the risk of delayed cerebral ischemia after endovascular treatment of aneurysmal subarachnoid hemorrhage has been reported rarely. Our study was proposed to explore this association.

View Article and Find Full Text PDF

Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties.

View Article and Find Full Text PDF

Quantitative understanding of uranium transport by high temperature fluids is crucial for confident assessment of its migration in a number of natural and artificially induced contexts, such as hydrothermal uranium ore deposits and nuclear waste stored in geological repositories. An additional recent and atypical context would be the seawater inundated fuel of the Fukushima Daiichi Nuclear Power Plant. Given its wide applicability, understanding uranium transport will be useful regardless of whether nuclear power finds increased or decreased adoption in the future.

View Article and Find Full Text PDF

TiCT MXene is a member of the recently discovered two-dimensional early transition metal carbide and nitride family of MXenes with potential applications in energy storage and heterogeneous catalysis at elevated temperatures. Here, we apply a suite of techniques to probe TiCT MXene's thermal evolutions, including X-ray diffraction (XRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and integrated thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In light of this set of investigations, we find heterogeneity in the layering of TiCT MXene revealed only at higher temperatures.

View Article and Find Full Text PDF

Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented.

View Article and Find Full Text PDF

Following the Fukushima Daiichi accident, significant efforts from industry and the scientific community have been directed towards the development of alternative nuclear reactor fuels with enhanced accident tolerance. Among the proposed materials for such fuels is a uranium silicide compound (USi), which has been selected for its enhanced thermal conductivity and high density of uranium compared to the reference commercial light water reactor (LWR) nuclear fuel, uranium oxide (UO). To be a viable candidate LWR fuel, however, USi must also demonstrate that, in the event of this fuel coming in contact with aqueous media, it will not degrade rapidly.

View Article and Find Full Text PDF

Orthosilicates adopt the zircon structure types (4), consisting of isolated SiO tetrahedra joined by A-site metal cations, such as Ce and U. They are of significant interest in the fields of geochemistry, mineralogy, nuclear waste form development, and material science. Stetindite (CeSiO) and coffinite (USiO) can be formed under hydrothermal conditions despite both being thermodynamically metastable.

View Article and Find Full Text PDF

Constructing three-dimensional (3D) metamaterials from functional nanoparticles endows them with emerging collective properties tailored by the packing geometries. Herein, we report 3D supercrystals self-assembled from upconversion nanorods (NaYF:Yb,Er NRs), which exhibit both translational ordering of NRs and orientational ordering between constituent NRs in the superlattice (SL). The construction of 3D reciprocal space mappings (RSMs) based on synchrotron-based X-ray scattering measurements was developed to uncover the complex structure of such an assembly.

View Article and Find Full Text PDF

Background: Oxidative stress and inflammation play important roles in the neuronal injury caused by intracerebral hemorrhage (ICH). Uric acid (UA), an important natural antioxidant, might reduce the neuronal injury caused by ICH. Delineating the relationship between UA and ICH will enhance our understanding of antioxidative mechanisms in recovery from ICH.

View Article and Find Full Text PDF

Fundamental understanding of the electronic, chemical, and structural properties of uranium oxides requires the synthesis of high-crystalline-quality epitaxial films of different polymorphs of one material or different phases with various oxygen valence states. We report the growth of single-phase epitaxial UO, α-UO, and α-UO thin films using pulsed laser deposition. Both oxygen partial pressure and substrate temperature play critical roles in determining the crystal structure of the uranium oxide films.

View Article and Find Full Text PDF

The development of tight oil has started relatively late, and the flow mechanisms and fluid movability are still research spotlights. The goal of this paper is to investigate the percolation characteristics and fluid movability of the Chang 6 tight sandstone oil layer in the Upper Triassic Yanchang Formation, Ordos Basin, China. Results show that (1) at low flow velocity, the percolation curve of flow velocity vs pressure gradient is a concave-up nonlinear curve and does not pass through the origin.

View Article and Find Full Text PDF

A novel pie-like structure of vertically stacked ZnO-nanodisks on Cu-nanoplates interlayer is prepared for the first time by a facile synthesis. The photochemical activity of the as-prepared samples was evaluated by the degradation of Rhodamine B (RhB) under UV-light. Because of the formation of heterojunction and closely-bonded layered structure, the novel nanocomposites can restrain the recombination of charge carriers and have better collection ability of light.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionate57j6kraa2vtvl5dhsi8v4cjrae4rh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once