Publications by authors named "Hongwen Xuan"

Two-photon microscopy (TPM) has a wide range of applications in the biomedical field. Two-photon multi-focus microscopy (TPMM) greatly improves the imaging speed by combining TPM with multi-focus technology. Therefore, TPMM based on spatial light modulator (SLM) has greater advantages in generating multi-focus point (MFP) with uniform intensity and flexible position than to other schemes.

View Article and Find Full Text PDF

The histone acylation reader eleven-nineteen leukemia (ENL) plays a pivotal role in sustaining oncogenesis in acute leukemias, particularly in -rearranged (-r) leukemia. ENL relies on its reader domain to recognize histone lysine acylation promoting oncogenic gene expression and leukemia progression. Here, we report the development of MS41, a highly potent and selective von Hippel-Lindau-recruiting ENL degrader that effectively inhibits the growth of ENL-dependent leukemia cells.

View Article and Find Full Text PDF

In this work, we propose an integrated terahertz mode adapter that couples broadband terahertz radiation from free-space to hollow-core fiber with a high mode conversion efficiency (Gaussian beam-to- ) of up to 80%. The adapter consists of a pyramidal horn antenna, a broadband mode converter, and a conical horn. The simulation results indicate that the mode in the hollow-core fiber can be efficiently excited by the terahertz mode adapter.

View Article and Find Full Text PDF
Article Synopsis
  • High-power femtosecond pulses with high-repetition rates can enhance machining efficiency and improve measurement accuracy.
  • The study presents a Kerr-lens mode-locked Yb:YAG ring-cavity thin-disk oscillator, achieving significant pulse characteristics with 175-fs pulses at 71.5 W output power and a 65.3 MHz repetition rate.
  • It achieved a peak intra-cavity power of 110 MW and set a record with 101.3 W output power for mode-locked ring lasers, showcasing the potential of multi-pass thin-disk configurations for advanced applications.
View Article and Find Full Text PDF

The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader.

View Article and Find Full Text PDF

KAT8 is an evolutionarily conserved lysine acetyltransferase that catalyzes histone acetylation at H4K16 or H4K5 and H4K8 through distinct protein complexes. It plays a pivotal role in male X chromosome dosage compensation in Drosophila and is implicated in the regulation of diverse cellular processes in mammals. Mutations and dysregulation of KAT8 have been reported in human neurodevelopmental disorders and various cancers.

View Article and Find Full Text PDF

The histone acetyltransferase p300/CBP is composed of several conserved domains, among which, the TAZ2 domain is known as a protein-protein interaction domain that binds to E1A and various transcription factors. Here we show that TAZ2 has a HAT autoinhibitory function. Truncating p300/CBP at TAZ2 leads to hyperactive HAT and elevated histone H3K27 and H3K18 acetylation in cells.

View Article and Find Full Text PDF

The inhibitor of apoptosis protein BIRC2 regulates fundamental cell death and survival signaling pathways. Here we show that BIRC2 accumulates in the nucleus via binding of its second and third BIR domains, BIRC2 and BIRC2, to the histone H3 tail and report the structure of the BIRC2-H3 complex. RNA-seq analysis reveals that the genes involved in interferon and defense response signaling and cell-cycle regulation are most affected by depletion of BIRC2.

View Article and Find Full Text PDF

Ultrafast ring-cavity thin-disk oscillators combine high output power with the flexibility of generating output either unidirectionally or bidirectionally. Here, we report a Kerr-lens mode-locked ring-cavity Yb:YAG thin-disk oscillator delivering unidirectional 89-fs pulses by inducing additional spectral broadening with nonlinear plates. This is the shortest pulse duration for a ring-cavity mode-locked thin-disk oscillator.

View Article and Find Full Text PDF

Unlabelled: HDAC6 is involved in several biological processes related to aging-associated diseases. However, it was unknown whether HDAC6 could directly regulate lifespan and healthspan. We found that HDAC6 knockdown induced transcriptome changes to attenuate the aging changes in the head, particularly on the inflammation and innate immunity-related genes.

View Article and Find Full Text PDF

Long bones are generated by mesoderm-derived skeletal progenitor/stem cells (SSCs) through endochondral ossification, a process of sequential chondrogenic and osteogenic differentiation tightly controlled by the synergy between intrinsic and microenvironment cues. Here, we report that loss of TRIM28, a transcriptional corepressor, in mesoderm-derived cells expands the SSC pool, weakens SSC osteochondrogenic potential, and endows SSCs with properties of ectoderm-derived neural crest cells (NCCs), leading to severe defects of skeletogenesis. TRIM28 preferentially enhances H3K9 trimethylation and DNA methylation on chromatin regions more accessible in NCCs; loss of this silencing upregulates neural gene expression and enhances neurogenic potential.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (TMDs) have great potential application for seamless on-chip integration due to their strong photon-electron-spin-valley coupling. However, the contact-free measurements of the valley-coupled photocurrent in TMDs is still challenging. Here, ultrafast terahertz emission spectroscopy is employed to investigate the photocurrent dynamics in monolayer WSe, and an interface-induced drift current amplification is found in the WSe/Si heterostructure.

View Article and Find Full Text PDF

An ytterbium-doped, single-stage, double-pass nonlinear fiber amplification system was fabricated for amplifying an 1100-nm mode-locking fiber laser. Pre-chirp managed amplification (PCMA) was applied in realizing the nonlinear amplification process with an all-polarization-maintaining (PM) fiber construction. The system can deliver 19.

View Article and Find Full Text PDF

A Nd:YAG single-crystal fiber amplifier for the amplification of continuous-wave single-frequency laser end-pumped by a laser diode (LD) is investigated. With a two-stage amplification configuration, an output power of 60.4 W under the total incident pump power of 200 W is achieved, which is, to our knowledge, the highest power from a continuous-wave single-frequency laser achieved with a single-crystal fiber scheme.

View Article and Find Full Text PDF

The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain.

View Article and Find Full Text PDF

The ZZ-type zinc finger and EF-hand domain protein 1 (ZZEF1) is a multidomain-containing protein. Mutations of ZZEF1 has been implicated in several kinds of human diseases such as diabetes and cancers. However, the function of the ZZEF protein remains largely unknown.

View Article and Find Full Text PDF

Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by 'reader' proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia.

View Article and Find Full Text PDF

Due to their unique properties such as transparency, tunability, nonlinearity, and dispersion flexibility, liquid-core fibers represent an important approach for future coherent mid-infrared light sources. However, the damage thresholds of these fibers are largely unexplored. Here we report on the generation of soliton-based supercontinua in carbon disulfide (CS) liquid-core fibers at average power levels as high as 0.

View Article and Find Full Text PDF

A compact, dual-stage, collinear-cascaded sum-frequency mixing configuration is presented for generating 193 nm sources. Due to the less-introduced, deep-ultraviolet optical components, the system is less prone to damage. In our proof-of-concept experiments, a 1030 nm laser and a 1553 nm laser synchronized to each other were used as drivers and an average power of ~0.

View Article and Find Full Text PDF

Brain "inflammaging," a low-grade and chronic inflammation, is a major hallmark for aging-related neurodegenerative diseases. Here, by profiling H3K27ac and gene expression patterns in human and mouse brains, we found that age-related up-regulated (Age-Up) and down-regulated (Age-Down) genes have distinct H3K27ac patterns. Although both groups show promoter H3K27ac, the Age-Up genes, enriched for inflammation-related functions, are additionally marked by broad H3K27ac distribution over their gene bodies, which is progressively reduced during aging.

View Article and Find Full Text PDF

We report a 10 kHz, 10.5 W deep ultraviolet (DUV) laser at 258 nm with a pulse duration of 3 ns by fourth-harmonic generation (FHG) in a CsLiBO crystal with high-conversion efficiency. The fundamental laser is at 1030 nm with 35 W output power consisting of a Yb:YAG ceramics thin rod amplifier.

View Article and Find Full Text PDF

A 1553 nm Er-doped fiber master-oscillator-power-amplifier (MOPA) laser system providing pulses with a 6 kHz repetition rate, 5 ns duration, ~210 μJ energy, ~300 MHz linewidth, and with a near diffraction limited beam quality, was developed. A gain fiber as short as 0.7 m in length was utilized in order to relax the SBS effect.

View Article and Find Full Text PDF

A narrow-linewidth, high average power deep-ultraviolet (DUV) coherent laser emitting at 193 nm is demonstrated by frequency mixing a Yb-hybrid laser with an Er-fiber laser. The Yb-hybrid laser consists of Yb-fiber lasers and an Yb:YAG amplifier. The average output power of the 193 nm laser is 310 mW at 6 kHz, which corresponds to a pulse energy of 51 μJ.

View Article and Find Full Text PDF