Introduction: Ophthalmic diseases of the retina are a significant cause of vision loss globally. Despite much progress, there remains an unmet need for durable, long-acting treatment options. While biologic therapies show great promise, they present many challenges, including complexities in biochemical properties, mechanism of action, manufacturing considerations, preclinical evaluation, and delivery mechanism; these are confounded by the unique anatomy and physiology of the eye itself.
View Article and Find Full Text PDFA resurgence of interest and investment in the field of gene therapy, driven in large part by advances in viral vector technology, has recently culminated in United States Food and Drug Administration approval of the first gene therapy product targeting a disease caused by mutations in a single gene. This product, LUXTURNA™ (voretigene neparvovec-rzyl; Spark Therapeutics, Inc., Philadelphia, PA), delivers a normal copy of the RPE65 gene to retinal cells for the treatment of biallelic RPE65 mutation-associated retinal dystrophy, a blinding disease.
View Article and Find Full Text PDFTopical delivery of therapeutics to the posterior segment of the eye remains the "holy grail" of ocular drug delivery. As an example, anti-vascular endothelial growth factor biologics, such as ranibizumab, aflibercept, and bevacizumab, are delivered by intravitreal injection to treat neovascular age-related macular degeneration and, although these drugs have revolutionized treatment of the disease, less invasive alternatives to intravitreal injection are desired. Multiple reports in the literature have demonstrated topical delivery of both small and large molecules to the back of the eye in small animal models.
View Article and Find Full Text PDF