Background: Retinal disorders cause substantial visual burden globally. Accurate estimates of the vision loss due to retinal diseases are pivotal to inform optimal eye health care planning and allocation of medical resources. The purpose of this study is to describe the proportion of visual impairment and blindness caused by major retinal diseases in China.
View Article and Find Full Text PDFOperation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW).
View Article and Find Full Text PDFSci Bull (Beijing)
February 2021
We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator. Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons. These patterns are in excellent agreement with a simulation using the Tavis-Cummings model, and allow us to readily identify different parameter regimes for both qubits in the detuning space.
View Article and Find Full Text PDFIn silicon quantum dots (QDs), at a certain magnetic field commonly referred to as the "hot spot," the electron spin relaxation rate (T_{1}^{-1}) can be drastically enhanced due to strong spin-valley mixing. Here, we experimentally find that with a valley splitting of 78.2±1.
View Article and Find Full Text PDFThe silicon metal-oxide-semiconductor quantum dot architecture is a leading approach for the physical implementation of semiconductor quantum computing. One major challenge for scalable quantum dots is the presence of charge impurities. Electron-beam lithography (EBL), almost universally used to fabricate quantum dot devices, is known to create such defects at the Si/SiO interface.
View Article and Find Full Text PDFQubits based on silicon quantum dots are emerging as leading candidates for the solid-state implementation of quantum information processing. In silicon, valley states represent a degree of freedom in addition to spin and charge. Characterizing and controlling valley states is critical for the encoding and read-out of electrons-in-silicon-based qubits.
View Article and Find Full Text PDFStrong coupling between two qubits is one of the main requirements for high fidelity two-qubit logic operations. Here we experimentally investigate the capacitive coupling between two double quantum dots. A pair of open slot confinement gates is used to enhance the coupling.
View Article and Find Full Text PDFMicrowave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field.
View Article and Find Full Text PDFWe experimentally demonstrate a tunable hybrid qubit in a five-electron GaAs double quantum dot. The qubit is encoded in the (1,4) charge regime of the double dot and can be manipulated completely electrically. More importantly, dot anharmonicity leads to quasiparallel energy levels and a new anticrossing, which help preserve quantum coherence of the qubit and yield a useful working point.
View Article and Find Full Text PDFWe use an on-chip superconducting resonator as a sensitive meter to probe the properties of graphene double quantum dots at microwave frequencies. Specifically, we investigate the charge dephasing rates in a circuit quantum electrodynamics architecture. The dephasing rates strongly depend on the number of charges in the dots, and the variation has a period of four charges, over an extended range of charge numbers.
View Article and Find Full Text PDFWe fabricated a hybrid device with two distant graphene double quantum dots (DQDs) and a microwave resonator. A nonlinear response is observed in the resonator reflection amplitude when the two DQDs are jointly tuned to the vicinity of the degeneracy points. This observation can be well fitted by the Tavis-Cummings (T-C) model which describes two two-level systems coupling with one photonic field.
View Article and Find Full Text PDFZhongguo Xue Xi Chong Bing Fang Zhi Za Zhi
April 2015
Objective: To understand the dynamics of schistosomiasis japonica in a national surveillance site in Honghu City, Hubei Province, China, so as to provide the evidence for formulating the intervention strategy of schistosomiasis control in the whole city.
Methods: The surveillance was performed in the surveillance village according to The National Surveillance Scheme of Schistosomiasis Japonica, and the results were analyzed statistically from 2005 to 2013.
Results: The schistosome infection rates in residents and cattle decreased from 1.
Universal multiple-qubit gates can be implemented by a set of universal single-qubit gates and any one kind of entangling two-qubit gate, such as a controlled-NOT gate. For semiconductor quantum dot qubits, two-qubit gate operations have so far only been demonstrated in individual electron spin-based quantum dot systems. Here we demonstrate the conditional rotation of two capacitively coupled charge qubits, each consisting of an electron confined in a GaAs/AlGaAs double quantum dot.
View Article and Find Full Text PDFCharge noise is critical in the performance of gate-controlled quantum dots (QDs). Such information is not yet available for QDs made out of the new material graphene, where both substrate and edge states are known to have important effects. Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature.
View Article and Find Full Text PDFSilicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance.
View Article and Find Full Text PDFGraphene double quantum dots (DQDs) open to use charge or spin degrees of freedom for storing and manipulating quantum information in this new electronic material. However, impurities and edge disorders in etched graphene nano-structures hinder the ability to control the inter-dot tunnel coupling, tC, the most important property of the artificial molecule. Here we report measurements of tC in an all-metal-side-gated graphene DQD.
View Article and Find Full Text PDFA quantum point contact was used to observe single-electron fluctuations of a quantum dot in a GaAs heterostructure. The resulting random telegraph signals (RTS) contain statistical information about the electron spin state if the tunneling dynamics are spin dependent. We develop a statistical method to extract information about spin-dependent dynamics from RTS and use it to demonstrate that these dynamics can be studied in the thermal energy regime.
View Article and Find Full Text PDFThe spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size.
View Article and Find Full Text PDFThe use of spin transfer nano-oscillators (STNOs) to generate microwave signals in nanoscale devices has aroused tremendous and continuous research interest in recent years. Their key features are frequency tunability, nanoscale size, broad working temperature, and easy integration with standard silicon technology. In this feature article, we give an overview of recent developments and breakthroughs in the materials, geometry design and properties of STNOs.
View Article and Find Full Text PDFA basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits.
View Article and Find Full Text PDFThe excitation of the steady-state precessions of magnetization opens a new way for nanoscale microwave oscillators by exploiting the transfer of spin angular momentum from a spin-polarized current to a ferromagnet, referred to as spin-transfer nano-oscillators (STNOs). For STNOs to be practical, however, their relatively low output power and their relatively large line width must be improved. Here we demonstrate that microwave signals with maximum measured power of 0.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2009
We employ the self-consistent local density approximation and the microscopic Hartree-Fock theory to investigate the quantum Hall pseudospin ferromagnets at the Landau levels degenerate regime of a single quantum well with two-subbands filled. We carry out a detailed calculation of the pseudospin anisotropy energy using real experimental parameters and obtain the phase diagrams that would be accessed experimentally by changing the electron density and the bias voltage. We find that an easy-plane and easy-axis quantum Hall pseudospin ferromagnet can form at total filling factors ν = 3 and ν = 4, respectively, which are consistent with experimental observation.
View Article and Find Full Text PDF