Microbial remediation has become the most promising technical means for the remediation of polycyclic aromatic hydrocarbons (PAHs) non-point source contaminated soil due to its low cost of treatment, complete degradation of pollutants, and remediation. In this study, in order to demonstrate the phenanthrene degrading microbial diversity, phenanthrene was chosen as the representative of PAHs and strains capable of degrading phenanthrene were isolated and screened from the sedimentation sludge and the bottom sludge of oil tank trucks, and high throughput sequencing was used to check the dominant strains with a good degrading effect on phenanthrene. Results showed even more than 50% of phenanthrene was degraded in all samples, the composition of PAH-degrading bacteria was diverse, and different environments constructed different functional microbial groups, which resulted in the microbial adapting to the diversity of the environment.
View Article and Find Full Text PDFEfficient seawater desalination is an effective way to solve the shortages of fresh water and energy but with limitations of the low fresh water production rate and high cost. Here, a hollow carbon fiber (HCF) wrapped by regular reduced graphene oxide (rGO) wave-like folds (rGO@HCF) is prepared on account of the differences in thermal shrinkage performance between graphene oxide (GO) and willow catkins fiber. Under one sun irradiation (1 kW m), the dry and wet surface temperature of the resulting evaporator reached up to 119.
View Article and Find Full Text PDFTo date, various solar driven evaporation technologies have been developed for treatment of seawater and wastewater but with the threat from salt polluted and single treatment of seawater. Herein, we develop a multifunctional evaporator constructed by carbon fiber coated by quinoa cellulose nanosheet (CFQC) with outstanding self-cleaning performance and good purification property for treatment of organic and antibiotic polluted water. The resulting Zn-CFQC exhibits good light to thermal performance which can absorb about 86.
View Article and Find Full Text PDFThe objective of this study is to investigate the qualitative mechanisms of Zn adsorption on carp biochars (CMB) produced from dead carp at different temperatures (450-650 °C) and their quantitative contribution. The pseudo second order kinetic model and the Langmuir model could fit the kinetic and isothermal adsorption data well, respectively. The intra-particle diffusion was the main rate-limiting step but not the only rate-limiting step.
View Article and Find Full Text PDFEfficient utilization of solar energy to generate steam is a green and promising technology because of its great potential applications in seawater desalination and industrial wastewater purification. However, the practical application of high-efficiency solar steam generation devices is largely overshadowed due to their complex process, high cost, low life-span, and poor thermal performance. Here, novel meat and bonemeal biochar (MBB) with high solar steam generation efficiency is produced by pyrolyzing dead carp at 300, 400, and 500 °C under anoxic conditions.
View Article and Find Full Text PDF