This paper introduces an electromagnetic structure utilizing the controllable mechanical properties of magnetorheological elastomer (MRE) materials through magnetic flux. An adaptive elastic foundation composed of these materials is explored for vibration reduction and frequency modulation. This study investigates these effects using both a single-mass model and a coupled human-seat model.
View Article and Find Full Text PDFFour-degree-of-freedom (4-DOF) human-chair coupling models are constructed to characterize the different contact modes between the head, chest back, waist back and backrest. The seat-to-head transfer ratio (STHT) is used as an evaluation metric for vibration reduction effectiveness. The simulated vibration reduction ratio of the model is close to the experimental results, which proves the validity of the model.
View Article and Find Full Text PDFIn recent years, low-power wireless sensors with high flexibility, portability and computing capability have been extensively applied in areas such as military, medicine and mechanical equipment condition monitoring. In this paper, a novel symmetrical T-shaped trapezoidal micro piezoelectric energy harvester (STTM-PEH) is proposed to supply energy for wireless sensors monitoring the vibrations of mechanical equipment. Firstly, the finite element model (FEM) of the STTM-PEH is established.
View Article and Find Full Text PDFWith the development of industry IoT, microprocessors and sensors are widely used for autonomously transferring information to cyber-physics systems. Massive quantities and huge power consumption of the devices result in a severe increment of the chemical batteries, which is highly associated with problems, including environmental pollution, waste of human/financial resources, difficulty in replacement, etc. Driven by this issue, mechanical energy harvesting technology has been widely studied in the last few years as a great potential solution for battery substitution.
View Article and Find Full Text PDFLower-limb motion monitoring is highly desired in various application scenarios ranging from rehabilitation to sports training. However, there still lacks a cost-effective, energy-saving, and computational complexity-reducing solution for this specific demand. Here, a motion capturing and energy harvesting hybridized lower-limb (MC-EH-HL) system with 3D printing is demonstrated.
View Article and Find Full Text PDFWith the rapid development of microelectronics technology, low-power electronic sensors have been widely applied in many fields, such as Internet of Things, aerospace, and so on. In this paper, a symmetrical ring-shaped piezoelectric energy harvester (SR-PEH) is designed to provide energy for the sensor to detect the ambient temperature. The finite element method is used by utilizing software COMSOL 5.
View Article and Find Full Text PDF