Publications by authors named "Hongran Wang"

The following reports on the generation of hydroxyl-radical activated water prepared by passing a hydrogen peroxide solution containing Fe(III) catalyst through a UV-C reactor. The activated water was subsequently evaluated for antimicrobial activity against Escherichia coli O157:H7 in suspension or when inoculated onto mung beans. Hydroxyl-radical generation was assessed through the oxidation of methylene blue when reacted with activated water prepared from solutions of different pH (4-10), UV-C dose (32-128 mJ/cm), hydrogen peroxide (0-1000 mg/L) and Fe(III) concentration (0-100 mg/L).

View Article and Find Full Text PDF

A continuous Photo-Fenton Advanced-Oxidation-Process (AOP) for reducing the chlorine-demand of spent lettuce wash water was developed based on the generation of hydroxyl-radicals from the UV-C degradation of hydrogen peroxide in the presence of ferric-catalyst. It was found that an interaction between UV-C and hydrogen peroxide or ferric-catalyst concentration was associated with high hydroxyl-radical generation as determined from the oxidation of methylene blue. The optimal AOP treatment was identified as 320 mJ/cm UV-C dose, 9.

View Article and Find Full Text PDF

Abstract: Processes based on generating vapor-phase hydroxyl radicals or chlorine radicals were developed for inactivating Listeria monocytogenes on mushrooms without negatively affecting quality. Antimicrobial radicals were generated from the UV-C degradation of hydrogen peroxide or hypochlorite and ozone gas. Response surface modeling was used to identify the interaction among the operating parameters for the hydroxyl radical process: UV-C254nm intensity, hydrogen peroxide concentration, and ozone delivered.

View Article and Find Full Text PDF

Color design for 3D indoor scenes is a challenging problem due to many factors that need to be balanced. Although learning from images is a commonly adopted strategy, this strategy may be more suitable for natural scenes in which objects tend to have relatively fixed colors. For interior scenes consisting mostly of man-made objects, creative yet reasonable color assignments are expected.

View Article and Find Full Text PDF

We propose an automatic method to identify people who are potentially-infected by droplet-transmitted diseases. This high-risk group of infection was previously identified by conducting large-scale visits/interviews, or manually screening among tons of recorded surveillance videos. Both are time-intensive and most likely to delay the control of communicable diseases like influenza.

View Article and Find Full Text PDF

Short tandem repeat within the male-specific part of the human Y chromosome (Y-STR) is an effective forensic tool in mixture identification, patrilineal relationship evaluation, and familial searches. Despite their usefulness, current Y-STR-based genotyping systems often lack the discriminatory power to resolve genetic relationships between distant relatives or within patrilocal populations. In this study, we developed a novel Y-STR 29-plex typing system, which combined the 17 Y-STR loci used in the AmpFLSTR® Yfiler® PCR Amplification Kit (Yfiler), eight Y-STR loci with a low-medium mutation rate, and four rapidly mutating Y-STR loci.

View Article and Find Full Text PDF

A skin biopsy was obtained from a 14-year-old female patient with a history of Myelomeningocele. Dermal fibroblasts were isolated and reprogrammed with Sendai virus (SeV) vectors encoding OCT3/4, SOX2, KLF4, and c-MYC. The generated induced Pluripotent Stem Cell (iPSC) clones NTDi4_09A were free of genomically integrated reprogramming genes, had a stable normal karyotype and expressed pluripotency markers.

View Article and Find Full Text PDF

p53 is a barrier to somatic cell reprogramming. Deletion or transient suppression of p53 increases the efficiency of reprogramming of somatic cells into induced pluripotent stem cells. Whether p53 represents an obstacle to a similar process transdifferentiation of somatic cells is unknown.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES) cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs) transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc), without antibiotic selection or MEF feeders.

View Article and Find Full Text PDF

Oct4 is considered a key transcription factor for pluripotent stem cell self-renewal. It binds to specific regions within target genes to regulate their expression and is downregulated upon induction of differentiation of pluripotent stem cells; however, the mechanisms that regulate the levels of human Oct4 expression remain poorly understood. Here we show that expression of human Oct4 is directly repressed by germ cell nuclear factor (GCNF), an orphan nuclear receptor, in hES cells.

View Article and Find Full Text PDF

Background: To determine the amount of co-expression of IDO and EGFR in breast cancer patients.

Materials And Methods: In order to obtain the distribution of co-expression of IDO and EGFR in breast cancer, we tested 110 breast cancer paraffin tissue blocks with immunohistochemical methods. Then we investigated the relationship between the diagnostic and pathologic characteristics (tumor size, lymph node status, histologic grade, the gene expression of ER, PR, HER2, p53, Ki67 and PCNA) with the situation of co-expression of IDO and EGFR by reviewing the medical records of 32 breast cancer patients.

View Article and Find Full Text PDF

Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation as a model of early development. During our study of GCNF knockout (GCNF(-) (/) (-) ) ESC, we discovered that loss of GCNF leads to the repression of cyclin D1 activation during ESC differentiation.

View Article and Find Full Text PDF

The roles of microRNAs (miRNAs) and the miRNA processing machinery in the regulation of stem cell biology are not well understood. Here, we show that the p53 family member and p63 isoform, ΔNp63, is a transcriptional activator of a cofactor critical for miRNA processing (DGCR8). This regulation gives rise to a unique miRNA signature resulting in reprogramming cells to multipotency.

View Article and Find Full Text PDF

Loss of Dicer, an enzyme critical for microRNA biogenesis, results in lethality due to a block in mouse embryonic stem cell (mES) differentiation. Using ChIP-Seq we found increased H3K9me2 at over 900 CpG islands in the Dicer(-/-)ES epigenome. Gene ontology analysis revealed that promoters of chromatin regulators to be among the most impacted by increased CpG island H3K9me2 in ES (Dicer(-/-)).

View Article and Find Full Text PDF

Somatic cells have been reprogrammed into induced pluripotent stem (iPS) cells that recapitulate the pluripotent nature of embryonic stem (ES) cells. Reduced pluripotency and variable differentiation capacities have hampered progress with this technology for applications in regeneration medicine. We have previously shown that germ cell nuclear factor (Gcnf) is required for the repression of pluripotency genes during ES cell differentiation and embryonic development.

View Article and Find Full Text PDF

In sexual species, fertilization of oocytes produces individuals with alleles derived from both parents. Here we use pluripotent stem cells derived from somatic cells to combine the haploid genomes from two males to produce viable sons and daughters. Male (XY) mouse induced pluripotent stem cells (Father #1) were used to isolate subclones that had spontaneously lost the Y chromosome to become genetically female (XO).

View Article and Find Full Text PDF