Publications by authors named "Hongquan Gou"

DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy.

View Article and Find Full Text PDF

Expansion microscopy (ExM) facilitates nanoscale imaging under conventional microscopes, but it frequently encounters challenges such as fluorescence losses, low signal-to-noise ratio (SNR), and limited detection throughput. To address these issues, a method of orthogonal DNA self-assembly-based ExM (o-DAExM) platform is developed, which employs hybridization chain reaction instead of conventional fluorescence labeling units, showcasing signal amplification efficacy, enhancement of SNR, and expandable multiplexing capability at any stage of the ExM process. In this work, o-DAExM has been applied to compare with immunofluorescence-based ExM for cellular cytoskeleton imaging, and the resolved nanoscale spatial distributions of cytoskeleton show outstanding performance and reliability of o-DAExM.

View Article and Find Full Text PDF

Accurate and efficient molecular recognition plays a crucial role in the fields of molecular detection and diagnostics. Conventional trial-and-error-based molecular recognition approaches have always been challenged in distinguishing minimal differences between targets and non-targets, such as single nucleotide polymorphisms (SNPs) of oligonucleotides. To address these challenges, here, a novel concept of dynamic addressing analysis is proposed.

View Article and Find Full Text PDF

Color encoding plays a crucial role in painting, digital photography, and spectral analysis. Achieving accurate, target-responsive color encoding at the molecular level has the potential to revolutionize scientific research and technological innovation, but significant challenges persist. Here, we propose a multibit DNA self-assembly system based on computer-aided design (CAD) technology, enabling accurate, target-responsive, amplified color encoding at the molecular level, termed fluorescence encoding (FLUCO).

View Article and Find Full Text PDF

Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation.

View Article and Find Full Text PDF

Bioreactors with environment responsiveness for smart detection has attracted widespread interest. Bioreactors that operate in liquid have excellent reaction speed and sensitivity, and those that operate at a solid interface have unique portability and stability. However, bioreactors that can simultaneously take advantage of both properties are still limited.

View Article and Find Full Text PDF

Gastric cancer is one of the deadliest cancers worldwide. An accurate prognosis is essential for effective clinical assessment and treatment. Spatial patterns in the tumor microenvironment (TME) are conceptually indicative of the staging and progression of gastric cancer patients.

View Article and Find Full Text PDF

Given the complexity and highly heterogeneous nature of the microenvironment and its effects on antitumor immunity and cancer immune evasion, the prognostic value of a single immune marker is limited. Here, we show how the integration of immune checkpoint molecule expression and tumor-associated immune cell distribution patterns can influence prognosis prediction in non-small-cell lung cancer (NSCLC) patients. We analyzed tissue microarray (TMA) data derived from multiplex immunohistochemistry results and measured the densities of tumor-infiltrating CD8+ and FOXP3+ immune cells and tumor cells (PanCK+), as well as the densities of programmed cell death 1 (PD-1)+ and programmed cell death ligand 1 (PD-L1)+ cells in the peritumor and intratumor subregions.

View Article and Find Full Text PDF

The tumor microenvironment (TME) comprises distinct cell types, including stromal types such as fibroblast cells and macrophage cells, which have recently become a critical factor in tumor development and progression. Here, we identified the TME-related gene, plexin domain containing 2 (PLXDC2), in a high-stromal-score population. And we revealed that this gene was related to poor survival and advanced (tumor-node-metastasis) stage in gastric cancer (GC) patients from The Cancer Genome Atlas database.

View Article and Find Full Text PDF