Publications by authors named "Hongming Meng"

The limited osteointegration often leads to the failure of implant, which can be improved by fixing bioactive molecules onto the surface, such as arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif. Metal-Phenolic Networks (MPNs) have garnered increasing attention from different disciplines in recent years due to their simple and rapid process for depositing on various substrates or particles with different shapes. However, the lack of cellular binding sites on MPNs greatly blocks its application in tissue engineering.

View Article and Find Full Text PDF

Utilizing complementary bioactive peptides is a promising surface engineering strategy for bone regeneration on osteogenesis. In this study, we designed block peptides, (Lysine)-capped RGD (K-(linker-RGD)) and OGP (K-linker-(YGFGG)), which were mildly grafted onto PC/Fe-MPNs through supramolecular interactions between K and PC residues on the MPNs surface to form a dual peptide coating, named PC/Fe@K-RGD/OGP. The properties of the block peptides coating, including mechanics, hydrophilicity, chemical composition, etc.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head (ONFH) is a condition caused by a disruption or damage to the femoral head's blood supply, which causes the death of bone cells and bone marrow components and prevents future regeneration. Ferroptosis, a type of controlled cell death, is caused by iron-dependent lipid peroxidation. Here, we identified ferroptosis-related genes and infiltrating immune cells involved in ONFH and predicted the underlying molecular mechanisms.

View Article and Find Full Text PDF

Background: Osteoarthritis is a very common clinical disease in middle-aged and elderly individuals, and with the advent of ageing, the incidence of this disease is gradually increasing. There are few studies on the role of basement membrane (BM)-related genes in OA.

Method: We used bioinformatics and machine learning methods to identify important genes related to BMs in OA patients and performed immune infiltration analysis, lncRNA‒miRNA-mRNA network prediction, ROC analysis, and qRT‒PCR.

View Article and Find Full Text PDF

This study was performed to explore the effect of melatonin on pyroptosis in nucleus pulposus cells (NPCs) and the underlying mechanism of that effect. This experiment included three patients diagnosed with lumbar disc herniation who failed conservative treatment. Nucleus pulposus tissue was isolated from these patients when they underwent surgical intervention, and primary NPCs were isolated and cultured.

View Article and Find Full Text PDF

Collagen, commonly used in tissue engineering, is widespread in various tissues. During bone tissue regeneration, collagen can stimulate the cellular response and determine the fate of cells. In this work, we integrated collagen type II with procyanidin (PC) onto an implant coating by applying a layer-by-layer technique to demonstrate that collagen and PC can participate in the construction of new biomaterials and serve as multifunctional components.

View Article and Find Full Text PDF

Mucin, a family of glycoproteins, is widespread in the inner linings of various lumen organs and plays key roles in protecting epithelial cells from invasion by foreign species and communicating with the external environment. Here, we demonstrated that Mucin could be engineered as a promising building block in biomaterials with unexpected multifunctionalities by codepositing with procyanidin (PC, a kind of flavanol polyphenol) through a layer-by-layer technique. The process of generating PC/Mucin multilayers was well characterized and monitored, which was controllable by the assembly conditions.

View Article and Find Full Text PDF