In this paper, the chronotoxicity of radiofrequency fields (RF) in the pubertal testis development and the involved molecular pathways were investigated by exposing four-week-old mice to RF (1800 MHz, SAR, 0.50 W/kg) in the morning and evening of each day for three weeks. Then, pathological changes and functional indices within the testis were determined.
View Article and Find Full Text PDFThe ratio of Ce/Ce in their structure confers unique functions on cerium oxide nanoparticles (CeONPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeONPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro. Leydig cells were treated with different concentrations of CeONPs to identify the optimum concentration for cell proliferation.
View Article and Find Full Text PDFExposure to radiofrequency fields (RF) has been reported to induce adverse effects on testosterone production and its daily rhythm. However, the mechanisms underneath this effect remain unknown. In this study, male mice were exposed to 1800 MHz radiofrequency fields (RF, 40 μW/cm power intensity and 0.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2015
Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF.
View Article and Find Full Text PDFIn this study, we explored the circadian effects of daily radiofrequency field (RF) exposure on reproductive functional markers in adult male Sprague-Dawley rats. Animals in circadian rhythm (as indicated by melatonin measurements), were divided into several groups and exposed to 1800 MHz RF at 205 μw/cm(2) power density (specific absorption rate 0.0405 W/kg) for 2 h/day for 32 days at different zeitgeber time (ZT) points, namely, ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20.
View Article and Find Full Text PDFJ Toxicol Environ Health A
October 2012
Radiofrequency fields (RF) at 1800 MHz are known to affect melatonin (MEL) and testosterone in male rats, but it remains to be determined whether RF affected circadian rhythm of these plasma hormones. Male Sprague-Dawley rats were exposed to 1800-MHz RF at 208 μw/cm² power density (SAR: 0.5762 W/kg) at different zeitgeber (ZT) periods of the day, including 0 (ZT0), 4 (ZT4), 8 (ZT8), 12 (ZT12), 16 (ZT16), and 20 (ZT20) h.
View Article and Find Full Text PDF