Publications by authors named "Hongling Tian"

Article Synopsis
  • * Researchers collected seeds at different time intervals to conduct transcriptomic analysis and machine learning, identifying key pathways and four significant genes linked to AM seed germination.
  • * The findings confirm the role of specific genes through qRT-PCR and RNA sequencing, revealing new insights into ac4C modifications, which could guide future research and applications in plant science.
View Article and Find Full Text PDF

In this study, we propose a novel method for identifying lithology using an attention mechanism-enhanced graph convolutional neural network (AGCN). The aim of this method is to address the limitations of traditional approaches that evaluate unbalanced lithology by improving the identification of thin layers and small samples, while providing reliable data support for reservoir evaluation. To achieve this goal, we begin by using Principal Component Analysis (PCA) with maximum and minimum distance clustering (Max-min-distance) to correct the logging curves, which compensates for the low resolution of thin layers and enhances the accuracy of stratigraphic representation.

View Article and Find Full Text PDF

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer, degenerative disorders and organ ischaemia-reperfusion injury (IRI). Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene.

View Article and Find Full Text PDF

Mechanistic target of rapamycin complex 1 (mTORC1) is a conserved serine/threonine kinase that integrates various environmental signals to regulate cell growth and metabolism. mTORC1 activation requires tethering to lysosomes by the Ragulator-Rag complex. However, the dynamic regulation of the interaction between Ragulator and Rag guanosine triphosphatase (GTPase) remains unclear.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) is the major sensor for cytosolic DNA and activates type I interferon signaling and plays an essential role in antitumor immunity. However, it remains unclear whether the cGAS-mediated antitumor activity is affected by nutrient status. Here, our study reports that methionine deprivation enhances cGAS activity by blocking its methylation, which is catalyzed by methyltransferase SUV39H1.

View Article and Find Full Text PDF

Ferroptosis is a lipid peroxidation-dependent cell death caused by metabolic dysfunction. Ferroptosis-associated enzymes are promising therapeutic targets for cancer treatment. However, such therapeutic strategies show limited efficacy due to drug resistance and other largely unknown underlying mechanisms.

View Article and Find Full Text PDF

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal malignant tumor of female reproductive system. It is well-known that induction of STING-mediated type I interferons can enhance the resultant antitumor activity. However, STING pathway is usually inactivated in cancer cells at multiple levels.

View Article and Find Full Text PDF

Spaceflight-associated immune system weakening ultimately limits the ability of humans to expand their presence beyond the earth's orbit. A mechanistic study of microgravity-regulated immune cell function is necessary to overcome this challenge. Here, we demonstrate that both spaceflight (real) and simulated microgravity significantly reduce macrophage differentiation, decrease macrophage quantity and functional polarization, and lead to metabolic reprogramming, as demonstrated by changes in gene expression profiles.

View Article and Find Full Text PDF

Exposure to spaceflight and microgravity causes physiologic and psychologic changes including bone loss, cardiovascular dysfunction, and immune dysfunction. Anemia and hematopoietic disorders are observed in astronauts after spaceflight. Hematopoietic stem and progenitor cells (HSPCs), which can self-renew and give rise to all blood cells, play vital roles in hematopoiesis and homeostasis; however, the molecular mechanisms responsible for the impacts of microgravity on the proliferation of HSPCs remain unclear.

View Article and Find Full Text PDF

Discrimination of species and geographical origins of traditional Chinese medicine (TCM) is essential to prevent adulteration and inferior problems. We studied Ephedra sinica Stapf, Ephedra intermedia Schrenk et C.A.

View Article and Find Full Text PDF

Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses. Macrophages are roughly categorized into two different subsets named inflammatory M1 and anti-inflammatory M2 macrophages. We herein identified a unique pathogenic macrophage subpopulation driven by IL-23 with a distinct gene expression profile including defined types of cytokines.

View Article and Find Full Text PDF

The quality control of Wild. is a major challenge in its clinical application. In this paper, a new strategy for the quality evaluation of extracts was verified through reverse-phase ultra-performance liquid chromatography (UPLC).

View Article and Find Full Text PDF

This work was launched to explore the effect of habitat and growth year on the secondary metabolites contents of cultivated Polygala tenuifolia. The samples of cultivated P. tenuifolia were analyzed by ultra-high performance liquid chromatography(UPLC)-quadrupole time-of-flight mass spectrometry(Q-TOF MS), and the obtained data were analyzed using multiple statistical analysis and cluster analysis.

View Article and Find Full Text PDF

Inorganic elements are important components of medicinal herbs, and provide valuable experimental evidence for the quality evaluation and control of traditional Chinese medicine (TCM). In this study, to investigate the relationship between the inorganic elemental fingerprint and geographical origin identification of cultivated Polygala tenuifolia, 41 elemental fingerprints of P. tenuifolia from four major polygala-producing regions (Shanxi, Hebei, Henan, and Shaanxi) were evaluated to determine the importance of inorganic elements to cultivated P.

View Article and Find Full Text PDF

The agronomic traits (plant height, root diameter, root length, first lateral root height, lateral root amount, root weight) of 18 Polygala tenuifolia samples with different agronomic traits were analyzed, respectively. HPLC was used to analyze three main characteristic components including tenuifolin, polygalaxanthone Ⅲ, and 3,6'-disinapoyl sucrose. At last, the correlation between six agronomic traits and three main characteristic components were analyzed by scatter plot.

View Article and Find Full Text PDF

As one of the most important traditional Chinese medicine, the quality of Polygala tenuifolia is difficult to control and a new method must be established to facilitate/assist the breeding of P. tenuifolia. In this study, UPLC/Q-TOF-MS-based metabolomics analysis was performed to determine the chemical composition and screen metabolite biomarkers according to agronomic traits.

View Article and Find Full Text PDF

The content changes of chemical components in different phenological phase of the cultivated Polygala tenuifolia is one of the important factors for determination of the best harvest time in the production practice. In this study, the digital gene expression (DGE) profiles of the cultivated P. tenuifolia were analyzed in different phenological phase (flowering fruit bearing stage, wilting stage, dormancy stage).

View Article and Find Full Text PDF

Objective: The chemical differences of Polygala tenuifolia varieties-JinYuan 1 (JY1), FenYuan 2 (FY2) and traditional FenYang (FY) were studied, in order to provide reference for the breeding of Polygala tenuifolia.

Methods: The samples of JY1, FY2 and FY were subjected to ultra-high performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis. The obtained data were analyzed using Principal Component Analysis (PCA) and other statistical analysis methods, and differential metabolites were further figured out.

View Article and Find Full Text PDF

Radix polygalae, the dried roots of Polygala tenuifolia and P. sibirica, is one of the most well-known traditional Chinese medicinal plants. Radix polygalae contains various saponins, xanthones, and oligosaccharide esters and these compounds are responsible for several pharmacological properties.

View Article and Find Full Text PDF

Objective And Design: Molecular mechanisms of microgravity-caused immunosuppression are not fully elucidated. In the present study, we investigated the effects of simulated microgravity on macrophage functions and tried to identify the related intracellular signal pathways.

Material Or Subjects: Primary mouse macrophages were used in the present study.

View Article and Find Full Text PDF

Objective: To establish an HPLC fingerprint to evaluate the quality of Polygalae Radix, root xylem, and those collected in different growth ages or harvest time.

Method: Separation was performed at 30 °C on a Kromasil C18 column (4.6 mm x 250 mm, 5 μm); the mobile phases was acetonitrile and 0.

View Article and Find Full Text PDF

Macrophages acquire distinct phenotypes during tissue stress and inflammatory responses, but the mechanisms that regulate the macrophage polarization are poorly defined. Here we show that tuberous sclerosis complex 1 (TSC1) is a critical regulator of M1 and M2 phenotypes of macrophages. Mice with myeloid-specific deletion of TSC1 exhibit enhanced M1 response and spontaneously develop M1-related inflammatory disorders.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are one of the highly persistent organic pollutants, and they are toxic to plants and other living organisms, including human beings. To analyze the response of higher plant to PAHs, we investigated the effects of phenanthrene (PHE) on seed germination and various physiological changes of wheat seedlings. Specifically, we investigated growth, chlorophyll content, lipid peroxidation (LPO), activities of antioxidant enzymes and H2O2 accumulation.

View Article and Find Full Text PDF