Particle manipulation through the transfer of light or sound momentum has emerged as a powerful technique with immense potential in various fields, including cell biology, microparticle assembly, and lab-on-chip technology. Here, we present a novel method called Programmable Photoacoustic Manipulation (PPAM) of microparticles in liquid, which enables rapid and precise arrangement and controllable transport of numerous silica particles in water. Our approach leverages the modulation of pulsed laser using digital micromirror devices (DMD) to generate localized Lamb waves in a stainless steel membrane and acoustic waves in water.
View Article and Find Full Text PDFThe advancement of optoelectronic applications relies heavily on the development of high-performance photodetectors that are self-driven and capable of detecting a wide range of wavelengths. CsPbI nanorods (NRs), known for their outstanding optical and electrical properties, offer direct bandgap characteristics, high absorption coefficients, and long carrier diffusion lengths. However, challenges such as stability and limited photoluminescence quantum yield have impeded their widespread application.
View Article and Find Full Text PDFIn the fields of biomedicine and microfluidics, the non-contact capture, manipulation, and spin of micro-particles hold great importance. In this study, we propose a programmable non-contact manipulation technique that utilizes photoacoustic effect to spin and transport living shrimp eggs. By directing a modulated pulsed laser toward a liquid-covered stainless-steel membrane, we can excite patterned Lamb waves within the membrane.
View Article and Find Full Text PDFOptical and acoustic tweezers, despite operating on different physical principles, offer non-contact manipulation of microscopic and mesoscopic objects, making them essential in fields like cell biology, medicine, and nanotechnology. The advantages and limitations of optical and acoustic manipulation complement each other, particularly in terms of trapping size, force intensity, and flexibility. We use photoacoustic effects to generate localized Lamb wave fields capable of mapping arbitrary laser pattern shapes.
View Article and Find Full Text PDFDue to the characteristics of ultra-short pulse width and ultra-high peak power, femtosecond pulse laser can effectively induce nonlinear optical effects in trapped objects. As a result, it holds great value in the fields of micro and nano manipulation, microfluidics, and cell biology. However, the nonlinear optical effects on the stiffness of femtosecond optical traps remain unclear.
View Article and Find Full Text PDFJ Control Release
June 2023
Locoregional therapy has attracted increasing attention for subcutaneous tumors owing to its merits of minimally invasive operation and negligible systematic toxicity. However, to accelerate clinical translation, further promotions in deep-seated penetration, temporal-spatial controllability, personalized adaptability, as well as easy operation are still urgently needed. This work proposed a self-heating-cooking-package-inspired hydrothermally responsive multi-round acturable microneedle (HRMAM) system, which loaded docetaxel (DTX) in the polycaprolactone (PCL), to serve as deeply penetrable, hydrothermal-chemotherapy synergetic, on-demand and self-service anti-tumor treatment.
View Article and Find Full Text PDFThis research investigated the mechanism of ozone treatment on sweet cherry ( L.) by Lable-free quantification proteomics and physiological traits. The results showed that 4557 master proteins were identified in all the samples, and 3149 proteins were common to all groups.
View Article and Find Full Text PDFAmong 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron.
View Article and Find Full Text PDFCircular dichroism (CD), as one of the most representative chiroptical effects, provides a simple strategy for the detection and characterization of the molecular chirality. The enhancement and sign reversal of CD are of great importance for its practical applications in chiral bio-sensing, chirality switching and optical filtering, etc. Here, we realize considerable adjustments and the sign reversal of CD in quasi-three-dimensional (quasi-3D) combined Archimedean spiral nanostructures.
View Article and Find Full Text PDFThe ability of light beams to rotate nano-objects has important applications in optical micromachines and biotechnology. However, due to the diffraction limit, it is challenging to rotate nanoparticles at subwavelength scale. Here, we propose a method to obtain controlled fast orbital rotation (i.
View Article and Find Full Text PDFAll-optical photonic crystal diodes based on the Fano resonance of nonlinear defects are studied. The diodes can achieve nonreciprocal transmission ratios of 31.7 dB and 33.
View Article and Find Full Text PDFBased on the nonlinear resonators and self-collimation characteristics of light beams, we designed an all-optical photonic crystal beam splitter and switch. The proposed device consists of an input waveguide and three output waveguides connected to different ring resonators. Three pump beams transmit through different resonators via the self-collimation effect, and eight output states are realized by altering the intensity of the pump light.
View Article and Find Full Text PDFUltrasound fields have broad applications in imaging, sensing, medical therapy, etc. In these applications, it is of great importance to generate desired ultrasound fields. The generation of arbitrary ultrasound fields is challenging using phased array transducers or a monolithic acoustic hologram.
View Article and Find Full Text PDFThe sensitivities of the octagonal quasi-periodic photonic crystal (QPC) defective modes are theoretically studied. The octagonal QPC biosensors are composed of silicon columns arranged in a liquid background. By designing a defect structure, a variety of localized modes with different spatial symmetries and field profiles are obtained, and a maximum refractive index sensitivity 800 nm/RIU is achieved around 1500 nm transmission peak when the central rod's size equals 100 nm, and the corresponding detection limit reaches 0.
View Article and Find Full Text PDFControlled propulsion of microparticles and micromachines in fluids could revolutionize many aspects of technology, such as biomedicine, microfluidics, micro-mechanics, optomechanics, and cell biology. We report the self-propelled cyclic round-trip motion of metallo-dielectric Janus particles in static line optical tweezers (LOT). The Janus particle is a 5 μm-diameter polystyrene sphere half-coated with 3 nanometer thick gold film.
View Article and Find Full Text PDFBistable rotation is realized for a gold-coated Janus colloidal particle in an infrared optical trap. The metal coating on the Janus particles are patterned by sputtering gold on a monolayer of closely packed polystyrene particles. The Janus particle is observed to stably rotate in an optical trap.
View Article and Find Full Text PDFBacillus coagulans 2-6 is an excellent producer of optically pure l-lactic acid. However, little is known about the mechanism of synthesis of the highly optically pure l-lactic acid produced by this strain. Three enzymes responsible for lactic acid production-NAD-dependent l-lactate dehydrogenase (l-nLDH; encoded by ldhL), NAD-dependent d-lactate dehydrogenase (d-nLDH; encoded by ldhD), and glycolate oxidase (GOX)-were systematically investigated in order to study the relationship between these enzymes and the optical purity of lactic acid.
View Article and Find Full Text PDFBackground: This study aimed to enhance and improve the quality and safety of soy sauce. In the present work, the change of biogenic amines, such as histamine, tyramine, cadaverine, spermidine, was examined by the treatment of Candida versatilis and Zygosaccharomyces rouxii, and the influence of salt-tolerant yeast on biogenic amines was analysed during the whole fermentation process.
Results: The results showed that the content of biogenic amines was elevated after yeast treatment and the content of biogenic amines was influenced by using yeast.
Small interfering RNA (siRNA) has the potential to influence gene expression with a high degree of target gene specificity. However, the clinical application of siRNA therapeutics has proven to be less promising as evidenced by its poor intracellular uptake, instability in vivo, and nonspecific immune stimulations. Recently, we have demonstrated that single-walled carbon nanotube (SWNT)-mediated siRNA delivery can enhance the efficiency of siRNA-mediated gastrin-releasing peptide receptor (GRP-R) gene silencing by stabilizing siRNA while selectively targeting tumor tissues.
View Article and Find Full Text PDFWe demonstrate a newly-developed magneto-fluorescent carbon nanotube (CNT) mediated siRNA (CNT-siRNA) delivery system, which significantly silences our target of interest, gastrin-releasing peptide receptor (GRP-R), in neuroblastoma. CNT-siGRP-R resulted in a 50% silencing efficiency and a sustained efficacy of 9 days for one-time siRNA treatment , whereas siRNA delivered by the commercial transfection reagent couldn't knockdown GRP-R expression. We further show that CNT-siRNA efficiently inhibits the growth of subcutaneous xenograft tumors .
View Article and Find Full Text PDFWe demonstrate trapping and characterization of multiple gold nanospheres with a setup composed of dark field imaging and optical tweezers. The number of trapped nanospheres is quantified by the overall dark-field scattering intensity. The spectra of the scattering intensity show that there is no interparticle coupling among trapped nanospheres when the density of nanospheres in the trap is low enough (less than 10 particles), while the density of nanosphere increases the interparticle coupling of nanospheres becomes obvious.
View Article and Find Full Text PDFOptical trapping of gold nanoparticles is experimentally demonstrated using radially and azimuthally polarized beams. The transverse optical trapping stiffness of gold nanoparticles is measured. The radially polarized beam exhibits a higher trapping efficiency than the azimuthally polarized beam and the Gaussian beam.
View Article and Find Full Text PDFGold nanorods are too tiny to be manipulated using conventional mechanical methods. In this paper, we demonstrate the trapping, transferring, positioning and patterning of gold nanorods with dual-optical tweezers. The convenient manipulations are achieved by taking advantage of the longitudinal surface plasmon resonance of gold nanorods and the anisotropic optical trapping forces formed by two linearly polarized Gaussian beams.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2012
The biological functions of coiled coils generally depend on efficient folding and perfect pairing of their α-helices. Dynamic changes in the helical registry that lead to staggered helices have only been proposed for a few special systems and not found in generic coiled coils. Here, we report our observations of multiple staggered helical structures of two canonical coiled coils.
View Article and Find Full Text PDF