Publications by authors named "Hongli Pu"

To protect birds, it is crucial to identify their species and determine their population across different regions. However, currently, bird monitoring methods mainly rely on manual techniques, such as point counts conducted by researchers and ornithologists in the field. This method can sometimes be inefficient, prone to errors, and have limitations, which may not always be conducive to bird conservation efforts.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) has received widespread attention for its potential health effects on humans, wildlife, domestic animals, and livestock. In this review, we focus on PRV dynamics in wildlife, given the importance of wild-origin PRV transmission to domestic and farm animals. Wild boars, pigs, and raccoons can serve as reservoirs of PRV, with viral transmission to domestic livestock occurring via several routes, such as wild herd exposure, contaminated meat consumption, and insect vector transmission.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the gut and oral bacterial communities in Japalura sensu lato lizards from Sichuan Province, revealing Bacteroidota and Firmicutes as the dominant gut phyla.
  • It identifies unique microbial compositions in the gut of Japalura, differing from other insectivorous lizards, with Desulfobacterota being specific to this species.
  • The findings establish a foundation for understanding the microbial ecology of Japalura, indicating the role of certain phyla in adapting to extreme environments, and highlighting the diversity of their gut and oral microbiomes.
View Article and Find Full Text PDF

Budgerigar fledgling disease virus (BFDV) is the causative polyomavirus of budgerigar fledgling disease, an important avian immunosuppressive disease in budgerigars (). In the current study, we explored the etiological role and molecular characteristics of BFDV. We identified a novel BFDV strain, designated as SC-YB19, belonging to a unique cluster with three other domestic strains (WF-GM01, SD18, and APV-P) and closely related to Polish isolates based on complete sequences.

View Article and Find Full Text PDF

Diabetes mellitus is an epidemic worldwide. Pancreatic stem cells can be induced to differentiate into insulin-secreting cells, this method is an effective way to solve the shortage of islet donor. Poly (lactic acid-co-glycolic acid (PLGA) copolymer is an excellent scaffold for tissue engineering as it presents good biocompatibility and film forming properties.

View Article and Find Full Text PDF

Objective To improve the biocompatibility between polylactic- co-glycolic acid membrane and pancreatic stem cells, rat fibroblasts were used to modify the polylactic- co-glycolic acid membrane. Meanwhile, we constructed artificial islet tissue by compound culturing the pancreatic stem cells and the fibroblast-modified polylactic- co-glycolic acid membrane and explored the function of artificial islets in diabetic nude mice. Methods Pancreatic stem cells were cultured on the fibroblast-modified polylactic- co-glycolic acid membrane in dulbecco's modified eagle medium containing activin-A, β-catenin, and exendin-4.

View Article and Find Full Text PDF

To improve bond selectivity of recombinant β-glucuronidase in Escherichia coli (PGUS-E), based on the PGUS-E structure guidance, three key points R329, T369 and N467 were identified to be responsible for the bond selectivity of PGUS-E, and further saturation mutagenesis was conducted. Two positive mutants R329K and T369V were obtained by a combined selection technique of thin-layer chromatography and high performance liquid chromatography. Compared to PGUS-E, the bond selectivity of mutants R329K and T369V increased by 26.

View Article and Find Full Text PDF