Publications by authors named "Honglei Yue"

Zn anode is confronted with serious Zn dendrite growth and water-induced parasitic reactions, which severely hinders the rapid development and practical application of aqueous zinc metal batteries (AZMBs). Herein, inspired by sodium hyaluronate (SH) biomolecules in living organisms featured with the functions of water retention, ion-transport regulation, and film-formation, the SH working as a dynamic and self-adaptive "mask" is proposed to stabilize Zn anode. Benefiting from the abundant functional groups with high hydrophilicity and zincophilicity, SH molecule can constrain active water molecules on the Zn-electrolyte interface and participate in Zn solvation structure to suppress parasitic reactions.

View Article and Find Full Text PDF

Uncontrollable growth of lithium (Li) dendrite has severely hindered the development of Li metal anodes, while separator modification is regarded as a simple and effective way to mitigate the growth of Li dendrite. However, the "drop-dregs" phenomenon of coating layer desquamated from polyolefin separator due to their different Young's modulus would induce a nonuniform Li ionic flux, finally resulting in deteriorative electrochemical performance and even thermal runaway of the battery. Herein, we introduce a novel nanopile mechanical interlocking strategy to create delamination-free separator modification, which could stably generate a homogeneous Li ionic flux to guide long-term uniform Li deposition.

View Article and Find Full Text PDF

Currently, exploring high-volumetric-capacity electrode materials that allow for reversible (de-)insertion of large-size K ions remains challenging. Tellurium (Te) is a promising alternative electrode for storage of K ions due to its high volumetric capacity, confirmed in lithium-/sodium-ion batteries, and the intrinsic good electronic conductivity. However, the charge storage capability and mechanism of Te in potassium-ion batteries (KIBs) have not been unveiled until now.

View Article and Find Full Text PDF