Presently, there are several issues associated with solid waste fly ash, such as its accumulation and storage, low comprehensive utilization rate, lack of high-value utilization technology, environmental risk and ecological impact. Thus, based on the high silica content and adsorption characteristics of fly ash, two novel adsorbents, namely mesoporous silica-based material (MSM) and sodium dodecyl sulfate-modified fly ash (SDS-FA), were prepared using an ultrasound-assisted alkali fusion-hydrothermal method and surface modification method. Furthermore, effects of adsorbent dosage, initial pH, contact time, and initial concentration of the solution on the adsorption of the organic pollutant methylene blue (MB) by fly ash, MSM, and SDS-FA were investigated to select the optimal modified high silica fly ash adsorbent.
View Article and Find Full Text PDFTwo new tetracopper(II) complexes bridged by N-benzoate-N'-[3-(diethylamino)propyl]oxamide (H3bdpox), and ended with 4,4'-dimethyl-2,2'-bipyridine (Me2bpy) or 2,2'-bipyridine (bpy), namely [Cu4(bdpox)2(Me2bpy)2](pic)2 (1) and [Cu4(bdpox)2(bpy)2](pic)2·2H2O (2) (where pic denotes the picrate anion) have been synthesized and characterized by X-ray single-crystal diffraction and other methods. In both complexes, four copper(II) ions are bridged alternately by the cis-oxamido and the carboxylato groups of two bdpox(3-) ligands to form a centrosymmetric cyclic tetranuclear cation, in which, the copper(II) ions at the endo- and exo-sites of cis-bdpox(3-) ligand have square-planar and square-pyramidal coordination geometries, respectively. The reactivity towards DNA/BSA suggests that these complexes can interact with HS-DNA through the intercalation mode and the binding affinity varies as 1>2 depending on the hydrophobicity, and effectively quench the fluorescence of protein BSA via a static mechanism.
View Article and Find Full Text PDF