Identifying the side effects related to drugs is beneficial for reducing the risk of drug development failure and saving the drug development cost. We proposed a graph reasoning method, RKDSP, to fuse the semantics of multiple connection relationships, the local knowledge within each meta-path, the global knowledge among multiple meta-paths, and the attributes of the drug and side effect node pairs. We constructed drug-side effect heterogeneous graphs consisting of the drugs, side effects, and their similarity and association connections.
View Article and Find Full Text PDFPredicting disease-related candidate long noncoding RNAs (lncRNAs) is beneficial for exploring disease pathogenesis due to the close relations between lncRNAs and the occurrence and development of human diseases. It is a long-term and challenging task to adequately extract specific and local topologies in individual lncRNA network and individual disease network, and integrate the information of the connection relationships. We propose a new graph learning-based prediction method to encode specific and local topologies from each individual network, neighbor topologies with different connection relationships, and pairwise attributes.
View Article and Find Full Text PDF