Ischemic retinopathies including diabetic retinopathy are major causes of blindness. Although neurons and Müller glia are recognized as important regulators of reparative and pathologic angiogenesis, the role of mononuclear phagocytes (MPs) - particularly microglia, the resident retinal immune cells - is unclear. Here, we found MP activation in human diabetic retinopathy, especially in neovessels from human neovascular membranes in proliferative retinopathy, including TNF-α expression.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis.
View Article and Find Full Text PDFIschemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue.
View Article and Find Full Text PDFHigh-refractive-index sulfur-rich polymers with significantly improved thermal properties are prepared using divinylbenzene (DVB) as a comonomer in a modified, low-temperature inverse vulcanization with elemental sulfur. Differential scanning calorimetry and Fourier transform infrared studies reveal that under the modified inverse vulcanization conditions, homopolymerized DVB segments form, leading to high glass-transition temperatures ( > 100 °C) and thermal stability previously unattainable from the inverse vulcanization of bifunctional olefin comonomers. On the basis of the modified procedures, a three-step molding process of the inverse vulcanization product of DVB, poly(S--DVB), involving (1) prepolymer formation, (2) hot-press compression molding of the soft prepolymer, and (3) thermal annealing of the molded product is demonstrated.
View Article and Find Full Text PDFThe Nrf2-Keap1 pathway regulates transcription of a wide array of antioxidant and cytoprotective genes and offers critical protection against oxidative stress. This pathway has demonstrated benefit for a variety of retinal conditions. Retinal ischemia plays a pivotal role in many vision threatening diseases.
View Article and Find Full Text PDFChronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds.
View Article and Find Full Text PDFRetinal ischemia-reperfusion (I/R) is a pathophysiological process contributing to cellular damage in multiple ocular conditions, including glaucoma, diabetic retinopathy, and retinal vascular occlusions. Rodent models of I/R injury are providing significant insights into mechanisms and treatment strategies for human I/R injury, especially with regard to neurodegenerative damage in the retinal neurovascular unit. Presented here is a protocol for inducing retinal I/R injury in mice through elevation of intraocular pressure (IOP).
View Article and Find Full Text PDFStem cell-based therapy is emerging as a promising approach for chronic diabetic wounds, but strategies for optimizing both cellular differentiation and delivery remain as major obstacles. Here, we study bioengineered vascularized constructs as a therapeutic modality for diabetic wound healing. We developed a wound model in immunodeficient rodent and treated it with engineered vascularized constructs from endothelial progenitors or early vascular cells-derived from human induced pluripotent stem cells (hiPSCs) reprogrammed either from healthy donor or type-1 diabetic patient.
View Article and Find Full Text PDFReduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing.
View Article and Find Full Text PDFJ Neuroinflammation
December 2015
Background: Retinal ischemia results in neuronal degeneration and contributes to the pathogenesis of multiple blinding diseases. Recently, the fumaric acid ester dimethyl fumarate (DMF) has been FDA-approved for the treatment of multiple sclerosis, based on its neuroprotective and anti-inflammatory effects. Its potential role as a neuroprotective agent for retinal diseases has received little attention.
View Article and Find Full Text PDFRetinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
November 2014
The effect of chronic hyperglycemic exposure on endothelial cell (EC) phenotype, impaired wound neovascularization, and healing is not completely understood. The hypotheses are: 1) chronic exposure to diabetic conditions impairs the angiogenic potential of ECs and 2) this deficiency can be improved by an extracellular microenvironment of angiogenic peptide nanofibers. Angiogenic potential of microvascular ECs isolated from diabetic (db/db) and wild type (wt) mice was assessed by quantifying migration, proliferation, apoptosis, capillary morphogenesis, and vascular endothelial growth factor (VEGF) expression for cell cultures on Matrigel (Millipore, Billerica, MA) or nanofibers under normoglycemic conditions.
View Article and Find Full Text PDFAims/hypothesis: Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR.
View Article and Find Full Text PDFControlled translocation of molecules and ions across lipid membranes is the basis of numerous biological functions. Because synthetic systems can help researchers understand the more complex biological ones, many chemists have developed synthetic mimics of biological transporters. Both systems need to deal with similar fundamental challenges.
View Article and Find Full Text PDFLow-amplitude electric field (EF) is an important component of wound-healing response and can promote vascular tissue repair; however, the mechanisms of action on endothelium remain unclear. We hypothesized that physiological amplitude EF regulates angiogenic response of microvascular endothelial cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. A custom set-up allowed non-thermal application of EF of high (7.
View Article and Find Full Text PDFDiabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca(2+)](i)) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca(2+)](i) homeostasis due to altered sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and sodium-calcium exchanger (NCX) activity.
View Article and Find Full Text PDFRAD16-II peptide nanofibers are promising for vascular tissue engineering and were shown to enhance angiogenesis in vitro and in vivo, although the mechanism remains unknown. We hypothesized that the pro-angiogenic effect of RAD16-II results from low-affinity integrin-dependent interactions of microvascular endothelial cells (MVECs) with RAD motifs. Mouse MVECs were cultured on RAD16-II with or without integrin and MAPK/ERK pathway inhibitors, and angiogenic responses were quantified.
View Article and Find Full Text PDFChem Commun (Camb)
August 2011
With introverted polar groups and hydrophobic exteriors, cholate-derived amphiphilic molecular baskets were efficient transporters of glucose across lipid membranes.
View Article and Find Full Text PDFIt is difficult to efficiently remove gaseous styrene using a TiO(2) film-coated photoreactor under UV light. Therefore, we used a hybrid system consisting of a carbon-doped TiO(2) (C-TiO(2)) film and a media-packed biofilter in order to enhance the removal efficiency (RE) of gaseous styrene compared to that of a pure (undoped) TiO(2) photoreactor. The C-TiO(2) was synthesized by a sol-gel combustion method, and its absorption spectrum was stronger that of pure (undoped) TiO(2) in the UV-vis range.
View Article and Find Full Text PDFMacrocyclic oligocholates were found in a previous work (Cho, H.; Widanapathirana, L.; Zhao, Y.
View Article and Find Full Text PDFHydrophobic interactions normally are not considered a major driving force for self-assembling in a hydrophobic environment. When macrocyclic oligocholates were placed within lipid membranes, however, the macrocycles pulled water molecules from the aqueous phase into their hydrophilic internal cavities. These water molecules had strong tendencies to aggregate in a hydrophobic environment and templated the macrocycles to self-assemble into transmembrane nanopores.
View Article and Find Full Text PDFOligocholate foldamers with different numbers and locations of guanidinium-carboxylate salt bridges were synthesized. The salt bridges were introduced by incorporating arginine and glutamic acid residues into the foldamer sequence. The conformations of these foldamers were studied by fluorescence spectroscopy in homogeneous solution, anionic and nonionic micelles, and lipid bilayers.
View Article and Find Full Text PDFA molecular basket with four cholate units assembled on a cone-shaped calix[4]arene assumed reversed micelle-like conformation in 5% methanol/carbon tetrachloride. The inwardly facing hydroxyl groups on the cholates concentrated the polar solvent from the mostly nonpolar mixture. Methanolysis of alkyl halides benefited from the concentrated pocket of methanol if the substrate was capable of entering the basket.
View Article and Find Full Text PDF