Publications by authors named "Hongki Kim"

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of COVID-19 mRNA vaccines on mice with chronic inflammatory conditions, especially their cardiac toxicity and immune response based on the administration route.
  • Results showed that intravenous (IV) mRNA vaccination can worsen heart conditions like pericarditis and myocarditis, leading to increased inflammation and damage, particularly in mice with existing chronic inflammation.
  • The findings emphasize the importance of more research to understand how mRNA vaccines interact with chronic inflammatory conditions, particularly focusing on the impact of different injection methods.
View Article and Find Full Text PDF

Chiral hybrid perovskites show promise for advanced spin-resolved optoelectronics due to their excellent polarization-sensitive properties. However, chiral perovskites developed to date rely solely on the interaction between chiral organic ligand cations exhibiting point chirality and an inorganic framework, leading to a poorly ordered short-range chiral system. Here, we report a powerful method to overcome this limitation using dynamic long-range organization of chiral perovskites guided by the incorporation of chiral dopants, which induces strong interactions between chiral dopants and chiral cations.

View Article and Find Full Text PDF

Hybrid inorganic-organic perovskites with chiral response and outstanding optoelectronic characteristics are promising materials for next-generation spin-optoelectronics. In particular, two-dimensional (2D) perovskites are promising chiroptical candidates due to their unique ability to incorporate chiral organic cations into their crystal structure, which imparts chirality. To enable their practical applications in chiral optoelectronic devices, it is essential to achieve an anisotropy factor ( ∼ 2) in chiral 2D perovskites.

View Article and Find Full Text PDF

The effects of solution concentration and pH on the formation and surface structure of 2-pyrimidinethiolate (2PymS) self-assembled monolayers (SAMs) on Au(111) via the adsorption of 2,2'-dipyrimidyl disulfide (DPymDS) were examined using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). STM observations revealed that the formation and structural order of 2PymS SAMs were markedly influenced by the solution concentration and pH. 2PymS SAMs formed in a 0.

View Article and Find Full Text PDF

The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas) (CRISPR/Cas) systems have recently emerged as powerful molecular biosensing tools based on their collateral cleavage activity due to their simplicity, sensitivity, specificity, and broad applicability. However, the direct application of the collateral cleavage activity for in situ intracellular detection is still challenging. Here, we debut a CRISPR/Cas-assisted nanoneedle sensor (nanoCRISPR) for intracellular adenosine triphosphate (ATP), which avoids the challenges associated with intracellular collateral cleavage by introducing a two-step process of intracellular target recognition, followed by extracellular transduction and detection.

View Article and Find Full Text PDF

Solar-to-steam (STS) generation based on plasmonic materials has attracted significant attention as a green method for producing fresh water. Herein, a simple in situ method is introduced to fabricate Au nanoparticles (AuNPs) on cellulose filter papers as dual-functional substrates for STS generation and surface-enhanced Raman spectroscopy (SERS) sensing. The substrates exhibit 90% of broadband solar absorption between 350 and 1800 nm and achieve an evaporation rate of 0.

View Article and Find Full Text PDF

Chiral organic ligand-incorporated low-dimensional metal-halide perovskites have received increasing attention for next-generation photodetectors because of the direct detection capability of circularly polarized light (CPL), which overcomes the requirement for subsidiary optical components in conventional CPL photodetectors. However, most chiral perovskites have been based on low-dimensional structures that confine chiroptical responses to the ultraviolet (UV) or short-wavelength visible region and limit photocurrent due to their wide bandgap and poor charge transport. Here, chiroptical properties of 3D Cs FA MA Pb Sn I polycrystalline films are achieved by incorporating chiral plasmonic gold nanoparticles (AuNPs) into the mixed PbSn perovskite, without sacrificing its original optoelectronic properties.

View Article and Find Full Text PDF

The purpose of this study was to investigate the feasibility of using optical coherence tomography (OCT) to identify internal brain lesions, specifically intracerebral hemorrhage, without dissection. Mice with artificially injected brain hematomas were used to test the OCT system, and the recorded images were compared with microscopic images of the same mouse brains after hematoxylin and eosin staining. The intracranial structures surrounding the hematomas were clearly visualized by the OCT system without dissection.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza viruses are a significant public health concern due to pandemics and drug resistance issues; thus, a new monoclonal antibody called 6E3 has been developed to target a specific mutation (H275Y) associated with drug resistance.
  • The antibody shows a strong binding affinity, allowing it to detect drug-resistant pandemic H1N1 influenza viruses effectively using various assays, including a highly sensitive surface-enhanced Raman scattering (SERS) method.
  • The SERS assay can identify the drug-resistant virus at low concentrations and has been successfully applied to human samples, indicating its potential for improving diagnostics and treatment strategies for influenza.
View Article and Find Full Text PDF

Objectives: This study aimed to investigate the feasibility of using optical coherence tomography (OCT) to provide information about cochlear microanatomy at a cellular level, specifically of cochlear hair cells in mammals.

Materials And Methods: A total of 10 Sprague-Dawley rats were divided into 2 experimental groups for comparing the arrangement of normal and damaged hair cells. Postnatal day 3 Sprague-Dawley rats were used to test the swept-source OCT system, and the images recorded were compared with fluorescence microscope images.

View Article and Find Full Text PDF

Putrescine and cadaverine are important volatile indicators for the evaluation of food spoilage. In this study, a metal-organic framework (MOF)-coated surface-enhanced Raman scattering (SERS) paper platform for the detection of putrescine and cadaverine is developed. Au@ zeolite imidazolate framework-8 (ZIF-8) SERS paper is fabricated by the coating of ZIF-8 layer on a Au nanoparticle-impregnated paper that is prepared by dry plasma reduction.

View Article and Find Full Text PDF

Background: The distribution and connection of ventricular Purkinje fibers are known to be associated with idiopathic left ventricular arrhythmias. Unusual anatomy is one of the important factors associated with catheter ablation success rate. With the widefield high-speed, swept-source optical coherence microscopy (OCM) and light microscope, we visualized the left ventricular Purkinje fiber distribution.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses, including the SARS-CoV-2 causing COVID-19, pose a significant and ongoing threat to human health, with concerns over potential re-emergence of drug-resistant strains like pH1N1.
  • A new colorimetric technique using the CRISPR/Cas9 system allows for direct detection of viral RNA with an observable color change, making it easy to identify viruses visually.
  • This method has successfully detected SARS-CoV-2 and pH1N1 in clinical samples, suggesting it could offer a simple and effective diagnostic tool for viral infections.
View Article and Find Full Text PDF

Antimicrobial resistance and multidrug resistance are slower-moving pandemics than the fast-spreading coronavirus disease 2019; however, they have potential to cause a much greater threat to global health. Here, we report a clustered regularly interspaced short palindromic repeats (CRISPR)-mediated surface-enhanced Raman scattering (SERS) assay for multidrug-resistant (MDR) bacteria. This assay was developed a synergistic combination of the specific gene-recognition ability of the CRISPR system, superb sensitivity of SERS, and simple separation property of magnetic nanoparticles.

View Article and Find Full Text PDF

Exosomal messenger RNA (mRNA) has emerged as a valuable biomarker for liquid biopsy-based disease diagnosis and prognosis due to its stability in body fluids and its biological regulatory function. Here, we report a rapid one-step isothermal gene amplification reaction based on three-way junction (3WJ) formation and the successful detection of urinary exosomal mRNA from tumor-bearing mice. The 3WJ structure can be formed by the association of 3WJ probes (3WJ-template and 3WJ-primer) in the presence of target RNA.

View Article and Find Full Text PDF

The emergence and spread of antiviral drug-resistant viruses have been a worldwide challenge and a great concern for patient care. We report A4 antibody specifically recognizing and binding to the mutant I223R/H275Y neuraminidase and prove the applicability of A4 antibody for direct detection of antiviral multidrug-resistant viruses in various sensing platforms, including naked-eye detection, surface-enhanced Raman scattering-based immunoassay, and lateral flow system. The development of the A4 antibody enables fast, simple, and reliable point-of-care assays of antiviral multidrug-resistant influenza viruses.

View Article and Find Full Text PDF

The NLRP3 (NACHT, LRR and PYD domains-containing protein 3) inflammasome has been implicated in a variety of diseases, including atherosclerosis, neurodegenerative diseases, and infectious diseases. Thus, inhibitors of NLRP3 inflammasome have emerged as promising approaches to treat inflammation-related diseases. The aim of this study was to explore the effects of juglone (5-hydroxyl-1,4-naphthoquinone) on NLRP3 inflammasome activation.

View Article and Find Full Text PDF

For the development of immunoassays into sophisticated analyte-sensing methods, it is a priority to suppress nonspecific binding in immunoassays. Herein, we report a one-step surface coating method that can not only optimally immobilize antibodies but also suppress nonspecific binding. Zwitterionic dopamine (-DOPA) exhibits distinct antifouling performance, and protein G enables an antibody to have an optimal orientation.

View Article and Find Full Text PDF

To understand the relationship between the work function and structural properties of sufficiently expanded triangular defects (size: ∼250 μm) in the 4H-SiC epitaxial layer, Kelvin probe force microscopy (KPFM) and spectroscopic [micro-Raman spectroscopy and photoluminescence (PL)] analyses were performed. Spectroscopic analysis demonstrated that the triangular defects mostly comprise the 3C polytypes and that it experiences internal stress, defects, and defect-induced carrier generation. The distinguishable areas in the triangular defects had surface potential values different from those of the 4H-SiC matrix; this could be explained by the work function difference, which arises from variations in the electron affinity of the 3C polytype as well as the positional variations of the Fermi energy level in terms of electron concentration.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate whether optical coherence tomography (OCT) provides useful information about the microstructures of the middle and inner ear via extratympanic approach and thereby could be utilized as an alternative diagnostic technology in ear imaging.

Methods: Five rats and mice were included, and the swept-source OCT system was applied to confirm the extent of visibility of the middle and inner ear and measure the length or thickness of the microstructures in the ear. The cochlea was subsequently dissected following OCT and histologically evaluated to compare with the OCT images.

View Article and Find Full Text PDF

Influenza viruses cause respiratory infection, spread through respiratory secretions, and are shed into the nasal secretion and saliva specimens. Therefore, nasal fluid and saliva are effective clinical samples for the diagnosis of influenza virus-infected patients. Although several methods have been developed to detect various types of influenza viruses, approaches for detecting mutant influenza viruses in clinical samples are rarely reported.

View Article and Find Full Text PDF

Practical application of surface-enhanced Raman scattering (SERS)-active platforms requires that they provide highly uniform and reproducible SERS signals. Moreover, to achieve highly stable and consistent SERS signals, it is important to control the nanostructured gaps of SERS-active platforms precisely. Herein, we report the synthesis of gap-controllable nanoporous plates and their application to efficient, robust, uniform, and reproducible SERS-active platforms.

View Article and Find Full Text PDF

For the construction of high-performance biosensor, it is important to interface bioreceptors with the sensor surface densely and in the optimal orientation. Herein, a simple surface modification method that can optimally immobilize antibodies onto various kinds of surfaces is reported. For the surface modification, a mixture of polydopamine (PDA) and protein G was employed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr6i2pg8mu97l39dlivopg3opcp2h1j52): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once