Introduction: Gait and posture abnormalities are the common disabling motor symptoms in Parkinson's disease (PD). This study aims to investigate the differential characteristics of gait and posture in early-onset PD (EOPD) and late-onset PD (LOPD) using the Kinect depth camera.
Methods: Eighty-eight participants, including two subgroups of 22 PD patients and two subgroups of 22 healthy controls (HC) matched for age, sex, and height, were enrolled.
Objective: To quantify bradykinesia in Parkinson's disease (PD) with a Kinect depth camera-based motion analysis system and to compare PD and healthy control (HC) subjects.
Methods: Fifty PD patients and twenty-five HCs were recruited. The Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) was used to evaluate the motor symptoms of PD.
Abnormal movement of the head and neck is a typical symptom of Cervical Dystonia (CD). Accurate scoring on the severity scale is of great significance for treatment planning. The traditional scoring method is to use a protractor or contact sensors to calculate the angle of the movement, but this method is time-consuming, and it will interfere with the movement of the patient.
View Article and Find Full Text PDFLiCoO is used as a cathode material for lithium-ion batteries, however, cationic/anodic-redox-induced unstable phase transitions, oxygen escape, and side reactions with electrolytes always occur when charging LiCoO to voltages higher than 4.35 V, resulting in severe capacity fade. Reported here is Mg-pillared LiCoO .
View Article and Find Full Text PDFIn-grain dislocation-induced lattice strain fluctuations are recently revealed as an effective avenue for minimizing the lattice thermal conductivity. This effect could be integratable with electronic enhancements such as by band convergence, for a great advancement in thermoelectric performance. This motivates the current work to focus on the thermoelectric enhancements of p-type PbTe alloys, where monotelluride-alloying and Na-doping are used for a simultaneous manipulation on both dislocation and band structures.
View Article and Find Full Text PDFResearch (Wash D C)
January 2020
Maximizing band degeneracy and minimizing phonon relaxation time are proven to be successful for advancing thermoelectrics. Alloying with monotellurides has been known to be an effective approach for converging the valence bands of PbTe for electronic improvements, while the lattice thermal conductivity of the materials remains available room for being further reduced. It is recently revealed that the broadening of phonon dispersion measures the strength of phonon scattering, and lattice dislocations are particularly effective sources for such broadening through lattice strain fluctuations.
View Article and Find Full Text PDFEnzymatic catalysis in living cells enables the in-situ detection of cellular metabolites in single cells, which could contribute to early diagnosis of diseases. In this study, enzyme is packaged in amorphous metal-organic frameworks (MOFs) via a one-pot co-precipitation process under ambient conditions, exhibiting 5-20 times higher apparent activity than when the enzyme is encapsulated in corresponding crystalline MOFs. Molecular simulation and cryo-electron tomography (Cryo-ET) combined with other techniques demonstrate that the mesopores generated in this disordered and fuzzy structure endow the packaged enzyme with high enzyme activity.
View Article and Find Full Text PDF