Small-caliber tissue-engineered vascular grafts (TEVGs, luminal diameter <6 mm) are promising therapies for coronary or peripheral artery bypassing surgeries or emergency treatments of vascular trauma, and a robust seed cell source is required for scalable manufacturing of small-caliber TEVGs with robust mechanical strength and bioactive endothelium in future. Human-induced pluripotent stem cells (hiPSCs) could serve as a robust cell source to derive functional vascular seed cells and potentially lead to generation of immunocompatible engineered vascular tissues. Up to date, this rising field of small-caliber hiPSC-derived TEVG (hiPSC-TEVG) research has received increasing attention and achieved significant progress.
View Article and Find Full Text PDFKeratinases are a group of proteases of great industrial significance. To take full advantage of Bacillus species as an inherent superior microbial producer of proteases, we performed the ribosome engineering to improve the keratinase synthesis capacity of the wild-type Bacillus thuringiensis by inducing streptomycin resistance. Mutant Bt(Str-O) was identified as a stable keratinase overproducer.
View Article and Find Full Text PDFBackground: Proteases with keratinolytic activity are widely used in biotechnologies. The feather-degrading Bacillus thuringensis isolated from soil sample of a tea plantation produced high level of extracellular keratinase.
Objective: This study aimed to analyze the properties by biochemical and enzymological methods to gain information for better utilization of the enzyme.
Ribosome is primarily regarded as the committing organelle for the translation process. Besides the expansion of its function from a translational machine for protein synthesis to a regulatory platform for protein quality control, the activity regulation and recycling of ribosome have been deepened significantly. Recent advances have confirmed a novel mechanism in the regulation of ribosome activity when a cell encounters adverse conditions.
View Article and Find Full Text PDFMultiple sequence alignment (MSA) is a fundamental way to gain information that cannot be obtained from the analysis of any individual sequence included in the alignment. It provides ways to investigate the relationship between sequence and function from a perspective of evolution. Thus, the MSA of proteins can be employed as a reference for protein engineering.
View Article and Find Full Text PDFAtrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5.
View Article and Find Full Text PDF