Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. Male C57BL/6J mouse models of ischemic stroke were treated with high-definition (HD)-transcranial alternating current stimulation (tACS; 20 Hz, 89.
View Article and Find Full Text PDFThe development of high-performance membranes selective for carbon dioxide is critically important for advancing energy-efficient carbon dioxide capture technologies. Although molecular sieves have long been attractive membrane materials, turning them into practical membrane applications has been challenging. Here, we introduce an innovative approach for crafting a polymeric molecular sieve membrane to achieve outstanding carbon dioxide separation performance while upholding the mechanical stability.
View Article and Find Full Text PDFStrategic design of nanostructures, such as the core-shell configuration, offers a promising avenue to harness the desired properties while mitigating the inherent limitations of individual materials. In our pursuit of synergizing the advantages of two distinct porous materials, namely, zeolites and metal-organic frameworks (MOFs), we aimed to develop the zeolite@MOF core-shell structures. To synthesize this targeted material while minimizing undesirable side reactions, we devised an innovative approach involving ion-exchange-induced crystallization and post-synthetic conversion.
View Article and Find Full Text PDFDogs with sialocele often have concurrent hypercortisolism or are receiving long-term glucocorticoid treatment. However, their association has not been investigated. This retrospective matched case-control study investigated the association between hypercortisolism, long-term glucocorticoid treatment, and sialocele in dogs.
View Article and Find Full Text PDFProperty optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu(HHTP) (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu(HHTP) crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) production from lignocellulosic biomass is economically beneficial. Because lignocellulosic biomass is a mixture rich in glucose and xylose, , which prefers glucose, needs to overcome glucose repression for efficient biosugar use. To avoid glucose repression, here, we overexpressed a xylose regulator () in an strain expressing , , and from and evaluated the effect of on PHB production.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) represent crystalline materials constructed from combinations of metal and organic units to often yield anisotropic porous structures and physical properties. Postsynthetic methods to align the MOF crystals in bulk remain scarce yet tremendously important to fully utilize their structure-driven intrinsic properties. Herein, we present an unprecedented composite of liquid crystals (LCs) and MOFs and demonstrate the use of nematic LCs to dynamically control the orientation of MOF crystals with exceptional order parameters (as high as 0.
View Article and Find Full Text PDFPhasin is a surface-binding protein of polyhydroxyalkanoate (PHA) granules that is encoded by the phaP gene. As its expression increases, PHA granules become smaller, to increase their surface area, and are densely packed inside the cell, thereby increasing the PHA content. A wide range of PHA-producing bacteria have phaP genes; however, their PHA productivity differs, although they are derived from the cognate bacterial host cell.
View Article and Find Full Text PDFUsing lignocellulosic biomass is immensely beneficial for the economical production of biochemicals. However, utilizing mixed sugars from lignocellulosic biomass is challenging because of bacterial preference for specific sugar such as glucose. Although previous studies have attempted to overcome this challenge, no studies have been reported on isobutanol production from mixed sugars in the Escherichia coli strain.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is a pathogenic bacterium that causes severe diseases in humans. For decades, MRSA has acquired substantial resistance against conventional antibiotics through regulatory adaptation, thereby posing a challenge for treating MRSA infection. One of the emerging strategies to combat MRSA is the combinatory use of antibacterial agents.
View Article and Find Full Text PDFThe existing study deals with adsorptive removal of the endocrine-disrupting chemical bisphenol-A and toxic azo dye solvent black-3 from single and binary solutions. These two chemicals are commonly used as an additive in the synthetic plastic industries. Among the tested twenty pristine and modified biochars, the pristine pinecone biochar produced at 750 °C revealed greater bisphenol-A removal.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) and their derivatives are biopolymers that have the potential of replacing petroleum-based plastics and can be produced and degraded via bacterial metabolism. However, there are only a few studies on polyhydroxybutyrate (PHB) production using lactate, one of the major waste organic acids that could be implemented in the production of polylactic acid (PLA). Herein, we screened and characterized the PHA-producing microbial strains isolated from saltern soil from Docho Island (South Korea).
View Article and Find Full Text PDFEver since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation.
View Article and Find Full Text PDFPhasin (PhaP), one of the polyhydroxyalkanoate granule-associated protein, enhances cell growth and polyhydroxybutyrate (PHB) biosynthesis by regulating the number and size of PHB granules. However, few studies have applied phasins to various PHB production conditions. In this study, we identified novel phasin genes from the genomic data of Arctic soil bacterium Pseudomonas sp.
View Article and Find Full Text PDFCommunity-associated Methicillin-Resistant (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔ mutant and the MW2Δ mutant by comparing LAC (USA300), MW2 (USA400), and Δ mutants.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are bioplastic substitutes for petroleum-derived plastics that may help to reduce the increasing environmental impact of plastic pollution. Among them, polyhydroxybutyrate (PHB) is a promising biopolymer, incentivizing many researchers to search for PHB-producing and PHB-degrading bacteria for improved PHB utilization. Many novel PHB-producing microorganisms have been discovered; however, relatively few PHB-degrading bacteria have been identified.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a biodegradable plastic with physical properties similar to petrochemically derived plastics. Here, Shewanella marisflavi BBL25 was engineered by inserting the pLW487 vector containing polyhydroxyalkanoates synthesis genes from Ralstonia eutropha H16. Under optimal conditions, the engineered S.
View Article and Find Full Text PDFPolyhydroxybutyrate (PHB) is a biodegradable plastic that can be used as an alternative to petrochemical-based plastics. PHB is produced by various microorganisms such as Ralstonia, Halomonas, and Bacillus species. However, there are very few strains that produce PHB using xylose, an abundant and inexpensive carbon source.
View Article and Find Full Text PDF