Despite the successful application of chimeric antigen receptor (CAR)-T cell therapy in hematological malignancies, the treatment efficacy in solid tumors remains unsatisfactory, largely due to the highly immunosuppressive tumor microenvironment and low density of specific tumor antigens. Natural killer group 2 member D (NKG2D) CAR-T cells have shown promising treatment effects on several cancers such as lymphoma and multiple myeloma. However, the application and efficacy of NKG2D-CAR-T cells in gastric cancer (GC) still needs further exploration.
View Article and Find Full Text PDFCancer Immunol Res
November 2019
Despite the great success of chimeric antigen receptor T (CAR-T)-cell therapy in the treatment of hematologic malignancies, CAR-T-cell therapy is limited in solid tumors, including hepatocellular carcinoma (HCC). NK group 2 member D (NKG2D) ligands (NKG2DL) are generally absent on the surface of normal cells but are overexpressed on malignant cells, offering good targets for CAR-T therapy. Indeed, analysis of The Cancer Genome Atlas and HCC tumor samples showed that the expression of most NKG2DLs was elevated in tumors compared with normal tissues.
View Article and Find Full Text PDFBackground: Traditional therapies fail to cure most glioblastoma patients and the 5-year survival rate is less than 10%, highlighting need for new therapeutic approaches. The natural killer group 2 member D ligands (NKG2DLs) are highly expressed in glioblastomas and are considered promising targets for chimeric antigen receptor (CAR) T-cell therapy. The aim of this study was to investigate the effect of NKG2D-expressing CAR-T cells on glioblastomas and glioblastoma stem cells.
View Article and Find Full Text PDFEcdysis-triggering hormone (ETH) was originally discovered and characterized as a molt termination signal in insects through its regulation of the ecdysis sequence. Here we report that ETH persists in adult , where it functions as an obligatory allatotropin to promote juvenile hormone (JH) production and reproduction. ETH signaling deficits lead to sharply reduced JH levels and consequent reductions of ovary size, egg production, and yolk deposition in mature oocytes.
View Article and Find Full Text PDFWe describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within (), encoding an essential proteasome subunit; Sc2.
View Article and Find Full Text PDFReactive oxygen species (ROS) produced in macrophages is critical for microbial killing, but they also take part in inflammation and antigen presentation functions. MicroRNAs (miRNAs) are endogenous regulators of gene expression, and they can control immune responses. To dissect the complex nature of ROS-mediated effects in macrophages, we sought to characterize miRNAs that are responsive to oxidative stress-induced with hydrogen peroxide (H(2)O(2)) in the mouse macrophage cell line, RAW 264.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
September 2008
Ecdysis-triggering hormone (ETH) is an integration factor in the ecdysis process of most insects, including Bombyx mori (silkworm). To understand the function of the ETH gene in silkworm, we developed an effective approach to knockdown the expression of ETH in vivo based on RNA interference (RNAi) and a binary UAS/GAL4 expression system that has been successfully used in other insect species. Two kinds of transgenic silkworm were established with this method: the effector strain with the ETH RNAi sequence under the control of UAS and the activator strain with the GAL4 coding sequence under the control of Bombyx mori cytoplasmic actin3.
View Article and Find Full Text PDFA heat shock inducible and inheritable RNA interference (RNAi) system was developed in the silkworm (Bombyx mori). RNAi transgenic silkworms were generated by injecting silkworm eggs with a piggyBac transposon plasmid carrying RNAi sequence against target gene driven by the Drosophila heat shock protein 70 (HSP70) promoter and the helper plasmid expressing piggyBac transposase. The transgenic EGFP gene and the endogenous eclosion hormone (EH) gene were chosen respectively as the target genes.
View Article and Find Full Text PDF