Purpose: Currently, the treatment of brain metastases from non-small cell lung cancer (NSCLC) is rather difficult in the clinic. A combination of small molecule-targeted drug and chemo-drug is a promising therapeutic strategy for the treatment of NSCLC brain metastases. But the efficacy of this combination therapy is not satisfactory due to the blood-brain barrier (BBB).
View Article and Find Full Text PDFSuperparamagnetic iron-oxide nanoparticle (SPION) has gained tremendous attention for drug delivery applications due to their unique properties. In this study, we developed a dual targeted delivery system with paclitaxel (PTX) and SPION co-loaded PLGA nanoparticles, modified with Pep-1 peptide (Pep-NP-SPION/PTX), to achieve magnetic targeting and active targeting for tumor treatment. SPION was synthesized by a co-precipitation method and was then encapsulated with PTX simultaneously into PLGA nanoparticles.
View Article and Find Full Text PDFBackground: Recent evidence suggests that CD200 fusion protein (CD200Fc), a CD200R1 agonist may attenuate inflammatory responses in autoimmune diseases and neuro-degeneration. While, little is known about the function of CD200Fc in cigarette smoke extract (CSE)-induced mouse Cardiac Microvascular Endothelial Cells (mCMECs). The present study was designed to elucidate the effects of CD200Fc on CSE-induced vascular endothelial barrier (VEB) dysfunction and inflammatory responses, which is a highly clinically relevant model of smoking related cardiovascular diseases.
View Article and Find Full Text PDFIn invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance.
View Article and Find Full Text PDFInterferons (IFNs) play a central role in immunity and emerging evidence suggests that IFN-signalling coordinately regulates sterol biosynthesis in macrophages, via Sterol Regulatory Element-Binding Protein (SREBP) dependent and independent pathways. However, the precise mechanisms and kinetic steps by which IFN controls sterol biosynthesis are as yet not fully understood. Here, we elucidate the molecular circuitry governing how IFN controls the first regulated step in the mevalonate-sterol pathway, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), through the synthesis of 25-Hydroxycholesterol (25-HC) from cholesterol by the IFN-inducible Cholesterol-25-Hydroxylase (CH25H).
View Article and Find Full Text PDF