The purpose of this cohort study was to identify associations between combined oral and bone disease phenotypes and genes present in cell regulatory pathways. The studied pathways play important roles in cellular growth, proliferation, differentiation, and homeostasis. DNA samples extracted from whole saliva of 3,912 individuals were genotyped and these data analyzed according to dental caries experience, periapical lesions, periodontitis, osteoporosis, or temporomandibular joint discomfort.
View Article and Find Full Text PDFBackground: Congenital forms of hearing impairment can be caused by mutations in the estrogen related receptor beta (ESRRB) gene. Our initial linkage studies suggested the ESRRB locus is linked to high caries experience in humans.
Methods: We tested for association between the ESRRB locus and dental caries in 1,731 subjects, if ESRRB was expressed in whole saliva, if ESRRB was associated with the microhardness of the dental enamel, and if ESRRB was expressed during enamel development of mice.
Advanced age is one of the most important risk factors for osteoporosis. Accumulation of oxidative DNA damage has been proposed to contribute to age-related deregulation of osteoblastic and osteoclastic cells. Excision repair cross complementary group 1-xeroderma pigmentosum group F (ERCC1-XPF) is an evolutionarily conserved structure-specific endonuclease that is required for multiple DNA repair pathways.
View Article and Find Full Text PDFBM stromal cells (BMSCs) are key players in the microenvironmental support of multiple myeloma (MM) cell growth and bone destruction. A spliced form of the X-box-binding protein-1 (XBP1s), a major proximal effector of unfolded protein response signaling, is highly expressed in MM cells and plays an indispensable role in MM pathogenesis. In the present study, we found that XBP1s is induced in the BMSCs of the MM microenvironment.
View Article and Find Full Text PDFObjective: Resveratrol, trans-3, 4', 5,-trihydroxystilbene, suppresses multiple myeloma (MM). The endoplasmic reticulum (ER) stress response component inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP1) axis is essential for MM pathogenesis. We investigated the molecular action of resveratrol on IRE1α/XBP1 axis in human MM cells.
View Article and Find Full Text PDFImmunomodulatory derivatives of thalidomide (IMiD compounds), such as pomalidomide and lenalidomide, are highly active in multiple myeloma (MM) treatment. However, the precise mechanisms of action and resistance in MM are unresolved. Here we show that IMiD compounds down-regulate CCAAT/enhancer-binding protein-β (C/EBPβ) resulting in abrogation of cell proliferation.
View Article and Find Full Text PDFXBP1 (X-box-binding protein 1) is a key modulator of the UPR (unfolded protein response), which is involved in a wide range of pathological and physiological processes. The mRNA encoding the active spliced form of XBP1 (XBP1s) is generated from the unspliced form by IRE1 (inositol-requiring enzyme 1) during the UPR. However, the post-translational modulation of XBP1s remains largely unknown.
View Article and Find Full Text PDFATF4 (activating transcription factor 4) is an osteoblast-enriched transcription factor that regulates terminal osteoblast differentiation and bone formation. ATF4 knock-out mice have reduced bone mass (severe osteoporosis) throughout life. Runx2 (runt-related transcription factor 2) is a runt domain-containing transcription factor that is essential for bone formation during embryogenesis and postnatal life.
View Article and Find Full Text PDFUnlabelled: Overexpression of Wnt10b from the osteocalcin promoter in transgenic mice increases postnatal bone mass. Increases in osteoblast perimeter, mineralizing surface, and bone formation rate without detectable changes in pre-osteoblast proliferation, osteoblast apoptosis, or osteoclast number and activity suggest that, in this animal model, Wnt10b primarily increases bone mass by stimulating osteoblastogenesis.
Introduction: Wnt signaling regulates many aspects of development including postnatal accrual of bone.
Mutation in the TSC2 tumor suppressor causes tuberous sclerosis complex, a disease characterized by hamartoma formation in multiple tissues. TSC2 inhibits cell growth by acting as a GTPase-activating protein toward Rheb, thereby inhibiting mTOR, a central controller of cell growth. Here, we show that Wnt activates mTOR via inhibiting GSK3 without involving beta-catenin-dependent transcription.
View Article and Find Full Text PDFTarget of rapamycin (TOR) proteins are members of the phosphatidylinositol kinase-related kinase (PIKK) family and are highly conserved from yeast to mammals. TOR proteins integrate signals from growth factors, nutrients, stress, and cellular energy levels to control cell growth. The ribosomal S6 kinase 1 (S6K) and eukaryotic initiation factor 4E binding protein 1(4EBP1) are two cellular targets of TOR kinase activity and are known to mediate TOR function in translational control in mammalian cells.
View Article and Find Full Text PDF