Publications by authors named "Hongjiao Li"

Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways.

View Article and Find Full Text PDF

The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking.

View Article and Find Full Text PDF

High-entropy alloys offer promising hydrogen storage properties and design versatility but suffer from compromised capacity and stability in practical industrial applications owing to surface poisoning caused by trace impurities or unexpected contact with air. Theoretical simulations provide a rapid and efficient platform for estimating anti-poisoning performance, particularly concerning alloys metal elements in various phases. This work explores the surface poisoning behavior of two typical high entropy materials: BCC-phase VTiCrFe and Laves-phase ZrTiVNiCrFe, along with pure metals V, Ti, Cr, and Fe as well as single AB (A = Zr, Ti, B = V, Ni, Cr, and Fe) compounds, at various phase stages during hydrogen storage cycles using density functional theory (DFT) simulations.

View Article and Find Full Text PDF

Efficiently exploring organic molecules through multi-step processes demands a transition from conventional laboratory synthesis to automated systems. Existing platforms for machine-assistant synthetic workflows compatible with multiple liquid-phases require substantial engineering investments for setup, thereby hindering quick customization and throughput increasement. Here we present a droplet-based chip that facilitates the self-organization of various liquid phases into stacked layers for conducting chemical transformations.

View Article and Find Full Text PDF

Investigating differences in resistance to alkaline stress among three willow species can provide a theoretical basis for planting willow in saline soils. Therefore we tested three willow species (Salix matsudana, Salix gordejevii and Salix linearistipularis), already known for their high stress tolerance, to alkaline stress environment at different pH values under hydroponics. Root and leaf dry weight, root water content, leaf water content, chlorophyll content, photosynthesis and chlorophyll fluorescence of three willow cuttings were monitored six times over 15 days under alkaline stress.

View Article and Find Full Text PDF

Background: Aging has been implicated in many chronic inflammatory diseases, including periodontitis. Periodontitis is an inflammatory disease caused by long-term irritation of the periodontal tissues by the plaque biofilm on the surface of the teeth. However, only a few bibliometric analyses have systematically studied this field to date.

View Article and Find Full Text PDF

As a sustainable alternative to fossil fuel-based manufacture of bulk oxygenates, electrochemical synthesis using CO and HO as raw materials at ambient conditions offers immense appeal. However, the upscaling of the electrosynthesis of oxygenates encounters kinetic bottlenecks arising from the competing hydrogen evolution reaction with the selective production of ethylene. Herein, a catalytic relay system that can perform in tandem CO capture, activation, intermediate transfer and enrichment on a Cu-Ag composite catalyst is used for attaining high yield CO-to-oxygenates electrosynthesis at high current densities.

View Article and Find Full Text PDF

Background: Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system.

View Article and Find Full Text PDF

Upcycle polyethylene terephthalate (PET) waste by photoreforming (PR) is a sustainable and green approach to tackle environmental problems but with challenges to obtain valuable oxidation products and high purity hydrogen simultaneously. Noble metal cocatalysts are essential to enhance the overall PR reaction efficacy. In this work, TiO nanotubes (TiO NTs) decorated with single Pt atoms (Pt/TiO) or Pt nanoparticles (Pt/TiO) are used in the photoreforming reaction (in one batch), and the oxidation products from ethylene glycol (EG, hydrolysed product of PET) in liquid phase and hydrogen are detected.

View Article and Find Full Text PDF

Hydroxylamine (NHOH) is an important feedstock in fuels, pharmaceuticals, and agrochemicals. Nanostructured electrocatalysts drive green electrosynthesis of hydroxylamine from nitrogen oxide species in water. However, current electrocatalysts still suffer from low selectivity and manpower-consuming trial-and-error modes, leaving unclear selectivity/activity origins and a lack of catalyst design principles.

View Article and Find Full Text PDF

Given the inherent complexity of cancer treatment and the limitations of singular therapeutic modalities, the development of an optimal nanocarrier system capable of facilitating synergistic organic therapy remains a profound challenge. Herein, a synergetic chemo/photothermal therapy nanoplatform was exploited to specifically tailor for the augmented treatment of oral cancer. A cancer cell membrane-camouflaged nanocarrier was developed with a polymeric core encapsulating doxorubicin (DOX).

View Article and Find Full Text PDF

Background: The addition of growth factiors is commonly applied to improve the osteogenic differentiation of stem cells. However, for human pluripotent stem cells (hPSCs), their complex differentiation processes result in the unknown effect at different stages. In this study, we focused on the widely used bone forming peptide-1 (BFP-1) and investigated the effect and mechanisms of its addition on the osteogenic induction of hPSCs as a function of the supplementation period.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BMMSCs) derived from myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients often show a shift in the balance between osteoblastogenesis and adipogenesis. It was suggested that BMMSCs can potentially undergo reprogramming or educational processes. However, the results of reprogrammed differentiation have been inconclusive.

View Article and Find Full Text PDF
Article Synopsis
  • Chemoresistance in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) complicates treatment efforts, as previously shown by the interaction of oncogene TWIST1 and DNA methyltransferase 3a (DNMT3a) affecting decitabine resistance.
  • The study identified that O-GlcNAc modification is increased in CD34 cells from MDS/AML patients resistant to decitabine, which stabilizes TWIST1 by interfering with its degradation by the ubiquitin E3 ligase CBLC.
  • TWIST1 also promotes the transcription of the O-GlcNAc transferase (OGT) gene, indicating that targeting O-GlcNAcyl
View Article and Find Full Text PDF

A disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.

View Article and Find Full Text PDF

Conductive hydrogels require tunable mechanical properties, high conductivity and complicated 3D structures for advanced functionality in (bio)applications. Here, we report a straightforward strategy to construct 3D conductive hydrogels by programable printing of aqueous inks rich in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inside of oil. In this liquid-in-liquid printing method, assemblies of PEDOT:PSS colloidal particles originating from the aqueous phase and polydimethylsiloxane surfactants from the other form an elastic film at the liquid-liquid interface, allowing trapping of the hydrogel precursor inks in the designed 3D nonequilibrium shapes for subsequent gelation and/or chemical cross-linking.

View Article and Find Full Text PDF

Two different drying methods (vacuum freeze-drying and hot-air drying) were used to dry mulberry of three varieties 'Baiyuwang'(D1), 'Longsang'(D2) and 'Zhongshen.1'(D3), and the fresh fruit of each variety was used as the control. The effects of different processing conditions on the physical characteristics, nutrients, functional components and antioxidant activity of mulberry fruit were analyzed.

View Article and Find Full Text PDF

Chemotherapeutic drugs are used routinely for treatment for myelodysplastic syndrome (MDS) patients but are ineffective in a substantial proportion of patients. Abnormal hematopoietic microenvironments, in addition to spontaneous characteristics of malignant clones, contribute to ineffective hematopoiesis. In our study, we found expression of enzyme β1,4-galactosyltransferase 1 (β4GalT1), which regulates N-acetyllactosamine (LacNAc) modification of proteins, is elevated in bone marrow stromal cells (BMSCs) of MDS patients, and also contributes to drug ineffectiveness through a protective effect on malignant cells.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a chronic recurrent intestinal disease. The incidence rate of IBD is increasing year by year, which seriously endangers human health worldwide. More and more studies have shown that medicinal plants or their main phytochemicals have great potential in the treatment of intestinal diseases.

View Article and Find Full Text PDF

β1,4-galactosyltransferase-1 (β4GalT1) is a type II membrane protein that catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) and forms a LacNAc structure. β4GalT1 has a long form (termed β4GalT1-L) and a short form (termed β4GalT1-S) in mammalian cells. Although β4GalT1 has been proven to play an important role in many biological and pathological processes, such as differentiation, immune responses and cancer development, the different functions of the two β4GalT1 forms remain ambiguous.

View Article and Find Full Text PDF

The acupuncture case registry study is focusing on acupuncture therapy data from patient cases. The main objective is to collect real-world data and integrate clinically meaningful outcome evaluation indicators to uncover and evaluate real-world acupuncture efficacy and safety, explore factors affecting acupuncture efficacy, and provide real-world evidence to complement RCTs. Since the International Acupuncture Case Registry data collection system's establishment in 2017, 16 projects have been underway, including two acupuncture specialty therapies and 15 diseases.

View Article and Find Full Text PDF

A novel palladium catalyzed homodimerization of -hydroxyphenyl substituted -QMs has been developed [4 + 2] cycloaddition/oxidative dehydrogenation coupling domino reactions. An interesting palladium catalyzed intramolecular benzyl C-H oxidation dehydrogenation to form a transannular C(sp)-O bond was found. This protocol provided an efficient method to construct various dibenzodioxo[3.

View Article and Find Full Text PDF

Capturing the surface-structural dynamics of metal electrocatalysts under certain electrochemical environments is intriguingly desired for understanding the behavior of various metal-based electrocatalysts. However, in situ monitoring of the evolution of a polycrystalline metal surface at the interface of electrode-electrolyte solutions at negative/positive potentials with high-resolution scanning tunneling microscopy (STM) is seldom. Here, we use electrochemical STM (EC-STM) for in situ monitoring of the surface evolution process of a silver electrode in both an aqueous sodium hydroxide solution and an ionic liquid of 1-methyl-1-octylpyrrolidinium bis(trifluoromethylsulfonyl) amide driven by negative potentials.

View Article and Find Full Text PDF

Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects.

View Article and Find Full Text PDF