Background: Brain microglia and macrophages (Mi/MΦ) can shift to a harmful or advantageous phenotype following an ischemic stroke. Identification of key molecules that regulate the transformation of resting Mi/MΦ could aid in the development of innovative therapies for ischemic stroke. The transcription factor signal transducer and activator of transduction 1 (STAT1) has been found to contribute to acute neuronal death (in the first 24 h) following ischemic stroke, but its effects on Mi/MΦ and influence on long-term stroke outcomes have yet to be determined.
View Article and Find Full Text PDFWhite-matter injury in sickle-cell disease (SCD) includes silent cerebral infarction diagnosed by diffusion tensor imaging (DTI), a complication associated with cognitive dysfunction in children with SCD. The link between white-matter injury and cognitive dysfunction has not been fully elucidated. The goal of this study was to define whether cerebrovascular lesions and cognitive function in SCD are linked to neuroaxonal damage and astrocyte activation in humanized Townes' SCD mice homozygous for human sickle hemoglobin S (SS) and control mice homozygous for human normal hemoglobin A (AA).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is commonly followed by intractable psychiatric disorders and long-term changes in affect, such as anxiety. The present study sought to investigate the effect of repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles on affective symptoms after TBI in mice. Adult male C57BL/6 J mice (10-12 weeks of age) were subjected to controlled cortical impact (CCI) and assessed by a battery of neurobehavioral tests up to 35 days after CCI.
View Article and Find Full Text PDFBackground: Stroke is the primary cause of chronic disability in the elderly, as there are no neurorestorative treatments for those who do not qualify for recanalization therapy. Experimental evidence in stroke animals suggests that transplantation of bone marrow-derived human mesenchymal stem cells (hMSCs) holds promise, but hMSC transplantation has not been systematically tested in aged animals. We tested the hypothesis that poststroke hMSC transplantation improves stroke recovery in aged mice by promoting brain repair.
View Article and Find Full Text PDFImmunomodulation holds therapeutic promise against brain injuries, but leveraging this approach requires a precise understanding of mechanisms. We report that CD8+CD122+CD49dlo T regulatory-like cells (CD8+ TRLs) are among the earliest lymphocytes to infiltrate mouse brains after ischemic stroke and temper inflammation; they also confer neuroprotection. TRL depletion worsened stroke outcomes, an effect reversed by CD8+ TRL reconstitution.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is commonly followed by long-term cognitive deficits that severely impact the quality of life in survivors. Recent studies suggest that microglial/macrophage (Mi/MΦ) polarization could have multidimensional impacts on post-TBI neurological outcomes. Here, we report that repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles for 4 weeks after controlled cortical impact improved hippocampus-dependent spatial and non-spatial cognitive functions in adult C57BL6 mice, as assessed by a battery of neurobehavioral tests for up to 5 weeks after TBI.
View Article and Find Full Text PDFTGFβ-activated kinase 1 (TAK1) is a master regulator that drives multiple cell death and proinflammatory signaling pathways, making it a promising therapeutic target to treat ischemic stroke. However, whether targeting TAK1 could improve stroke outcomes has never been tested in female subjects, hindering its potential translation into clinical use. Here we examined the therapeutic effect of 5Z-7-Oxozeaenol (OZ), a selective TAK1 inhibitor, in ovariectomized female mice after middle cerebral artery occlusion (MCAO).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLong-term neurological recovery after severe traumatic brain injury (TBI) is strongly linked to the repair and functional restoration of injured white matter. Emerging evidence suggests that the anti-inflammatory cytokine interleukin-4 (IL-4) plays an important role in promoting white matter integrity after cerebral ischemic injury. Here, we report that delayed intranasal delivery of nanoparticle-packed IL-4 boosted sensorimotor neurological recovery in a murine model of controlled cortical impact, as assessed by a battery of neurobehavioral tests for up to five weeks.
View Article and Find Full Text PDFRationale: Angiogenesis promotes neurological recovery after stroke and is associated with longer survival of stroke patients. Cerebral angiogenesis is tightly controlled by certain microRNAs (miRs), such as the miR-15a/16-1 cluster, among others. However, the function of the miR-15a/16-1 cluster in endothelium on postischemic cerebral angiogenesis is not known.
View Article and Find Full Text PDFBackground and Purpose- Microglia/macrophages (Mi/MΦ) can profoundly influence stroke outcomes by acquiring functionally dominant phenotypes (proinflammatory or anti-inflammatory; deleterious or salutary). Identification of the molecular mechanisms that dictate the functional status of Mi/MΦ after brain ischemia/reperfusion may reveal novel therapeutic targets for stroke. We hypothesized that activation of TAK1 (transforming growth factor beta-activated kinase 1), a key MAP3K upstream of multiple inflammation-regulating pathways, drives Mi/MΦ toward a proinflammatory phenotype and potentiates ischemia/reperfusion brain injury.
View Article and Find Full Text PDFEmerging evidence suggests that tissue plasminogen activator (tPA), currently the only FDA-approved medication for ischemic stroke, exerts important biological actions on the CNS besides its well-known thrombolytic effect. In this study, we investigated the role of tPA on primary neurons in culture and on brain recovery and plasticity after ischemic stroke in mice. Treatment with recombinant tPA stimulated axonal growth in culture, an effect independent of its protease activity and achieved through epidermal growth factor receptor (EGFR) signaling.
View Article and Find Full Text PDFPost-stroke treatment with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may be a promising therapy in young animals but this has not been tested in aged subjects, a population at most risk of ischemic stroke. Herein we examined the therapeutic efficacy of n-3 PUFAs after distal middle cerebral artery occlusion (dMCAO) in young (10-12 weeks old) and aged (18 months old) mice. Post-ischemic mice were randomly assigned to 4 groups that received: 1) regular food with low content of n-3 PUFAs, 2) intraperitoneal docosahexaenoic acid (DHA, a major component of n-3 PUFAs) injections, 3) Fish oil (FO, containing high concentration of n-3 PUFAs) dietary supplement, or 4) combined treatment with DHA and FO dietary supplement.
View Article and Find Full Text PDFRecombinant tissue plasminogen activator (tPA) is a Food and Drug Administration-approved thrombolytic treatment for ischemic stroke. tPA is also naturally expressed in glial and neuronal cells of the brain, where it promotes axon outgrowth and synaptic plasticity. However, there are conflicting reports of harmful versus neuroprotective effects of tPA in acute brain injury models.
View Article and Find Full Text PDFCaloric restriction (CR) has been extensively examined as a preventative strategy against aging and various diseases, but CR effects on cerebral ischemia are largely unknown. We subjected C57BL6/J mice to ad libitum food access (LF) or a diet restricted to 70% of ad libitum food access (RF) for two to four weeks followed by 60 min of transient focal ischemia (tFCI). RF for four weeks protected against subsequent tFCI-induced infarct.
View Article and Find Full Text PDFScaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling and repair following injury. The present study tested the hypothesis that the implantation of brain-derived ECM would attenuate experimental traumatic brain injury (TBI) and explored potential underlying mechanisms. TBI was induced in mice by a controlled cortical impact (CCI).
View Article and Find Full Text PDFTraumatic brain injury (TBI) can lead to long-term motor and cognitive dysfunction, which can be at least partly attributed to blood-brain barrier (BBB) disruption. The mechanisms underlying post-TBI BBB disruption, however, are poorly understood thus far. Na-K-2Cl cotransporter isoform 1 (NKCC1) is a universally expressed ion transporter that maintains intracellular ion homeostasis by increasing intracellular K and Cl.
View Article and Find Full Text PDFThe damage borne by the endothelial cells (ECs) forming the blood-brain barrier (BBB) during ischemic stroke and other neurological conditions disrupts the structure and function of the neurovascular unit and contributes to poor patient outcomes. We recently reported that structural aberrations in brain microvascular ECs-namely, uncontrolled actin polymerization and subsequent disassembly of junctional proteins, are a possible cause of the early onset BBB breach that arises within 30-60 min of reperfusion after transient focal ischemia. Here, we investigated the role of heat shock protein 27 (HSP27) as a direct inhibitor of actin polymerization and protectant against BBB disruption after ischemia/reperfusion (I/R).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is one of the most disabling clinical conditions that could lead to neurocognitive disorders in survivors. Our group and others previously reported that prophylactic enrichment of dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) markedly ameliorate cognitive deficits after TBI. However, it remains unclear whether a clinically relevant therapeutic regimen with n-3 PUFAs administered after TBI would still offer significant improvement of long-term cognitive recovery.
View Article and Find Full Text PDFWhite matter injury induced by ischemic stroke elicits sensorimotor impairments, which can be further deteriorated by persistent proinflammatory responses. We previously reported that delayed and repeated treatments with omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve spatial cognitive functions and hippocampal integrity after ischemic stroke. In the present study, we report a post-stroke n-3 PUFA therapeutic regimen that not only confers protection against neuronal loss in the gray matter but also promotes white matter integrity.
View Article and Find Full Text PDFProphylactic dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been shown to remarkably ameliorate ischemic brain injury. However, the therapeutic efficacy of n-3 PUFA administration post-stroke, especially its impact on neurovascular remodeling and long-term neurological recovery, has not been fully characterized thus far. In this study, we investigated the effect of n-3 PUFA supplementation, as well as in combination with docosahexaenoic acid (DHA) injections, on long-term stroke outcomes.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major cause of death and disability in young adults. Long-term mental disability often occurs in patients suffering moderate and severe TBI while not as frequent in the victims of mild TBI. To explore the potential mechanism underlying this severity-dependent cognitive deficit, we subjected C57/BL6 mice to different severities of controlled cortical impact (CCI) and assessed their learning-memory functions.
View Article and Find Full Text PDFA major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury.
View Article and Find Full Text PDFThe mechanism and long-term consequences of early blood-brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30-60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC signalling, persistent actin polymerization and the disassembly of junctional proteins within microvascular endothelial cells (ECs).
View Article and Find Full Text PDFGalectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells.
View Article and Find Full Text PDF