Publications by authors named "Hongjian Peng"

Sodium-ion batteries (SIBs) have significant potential for applications in portable electric vehicles and intermittent renewable energy storage due to their relatively low cost. Currently, hard carbon (HC) materials are considered commercially viable anode materials for SIBs due to their advantages, including larger capacity, low cost, low operating voltage, and inimitable microstructure. Among these materials, renewable biomass-derived hard carbon anodes are commonly used in SIBs.

View Article and Find Full Text PDF

At present, porphyrin is developing rapidly in the fields of medicine, energy, catalysts, More and more reports on its application are being published. This paper mainly takes the ingenious utilization of porphyrin derivatives in perovskite solar cells, dye-sensitized solar cells, and lithium batteries as the background to review the design idea of functional materials based on the porphyrin structural unit in the energy sector. In addition, the modification and improvement strategies of porphyrin are presented by visually showing the molecular structures or the design synthesis routes of its functional materials.

View Article and Find Full Text PDF

Two novel non-fullerene acceptors, namely BZIC-2Br and Y9-2Br, were synthesized by employing a ladder-type electron-deficient-based fused ring central with a benzotriazole core. Y9-2Br is obtained by extending the conjugate length of BZIC-2Br. Compared with BZIC-2Br, Y9-2Br possesses a lower optical bandgap of 1.

View Article and Find Full Text PDF

An unprecedented furan-based double oxa[7]helicene 1 was achieved, featuring a stable twisted conformation with π-overlap at both helical ends. The excellent conformational stability allowed for optical resolution of 1, which provided a pair of enantiomers exhibiting pronounced mirror-imaged circular dichroism and circularly polarized luminescence activity. The radical cation of 1 was obtained by chemical oxidation as evidenced by UV-Vis-NIR absorption, electron paramagnetic resonance spectroscopy and in situ spectroelectrochemistry.

View Article and Find Full Text PDF

Herein, a new "Y-series" non-fullerene acceptor, Y21, bearing an asymmetric electron-deficient-core (DA'D) and fluorinated dicyanomethylene derivatives as flanking groups, was designed and synthesized for organic solar cell applications. Rather than being a perfect C symmetric traditional "Y-series" acceptor, Y21 possesses an electron-withdrawing unit (A') shifted from the center of DA'D, turning into an asymmetric molecular geometry. Photovoltaic devices based on PM6:Y21 can realize a high J of 24.

View Article and Find Full Text PDF

Correction for 'A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency' by Yunqiang Zhang et al., Phys. Chem.

View Article and Find Full Text PDF

A new non-fullerene acceptor, namely Y10, based on dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (TPBT) as the central core and 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile (TC) as the electron-deficient end group, has been designed and synthesized. Y10 reveals a narrow optical energy gap (Eoptg) of 1.35 eV with a broad absorption band from 600 to 900 nm.

View Article and Find Full Text PDF

Narrow bandgap n-type organic semiconductors (n-OS) have attracted great attention in recent years as acceptors in organic solar cells (OSCs), due to their easily tuned absorption and electronic energy levels in comparison with fullerene acceptors. Herein, a new n-OS acceptor, Y5, with an electron-deficient-core-based fused structure is designed and synthesized, which exhibits a strong absorption in the 600-900 nm region with an extinction coefficient of 1.24 × 10 cm , and an electron mobility of 2.

View Article and Find Full Text PDF

A new small molecule acceptor, m-ITIC-OR, based on indacenodithieno[3,2-]thiophene core with -alkoxyphenyl side chains, is designed and synthesized. The m-ITIC-OR film shows broader and redshift absorption compared to its solution and matched energy levels with a hexafluoroquinoxaline-based polymer donor-HFQx-T. Here, polymer solar cells (PSCs) by blending an HFQx-T donor and an m-ITIC-OR acceptor as an active layer deliver the power conversion efficiency (PCE) of 6.

View Article and Find Full Text PDF

A novel nonfullerene small molecular acceptor (BZIC) based on a ladder-type thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole core (dithieno[3,2-b]pyrrolobenzotriazole, BZTP) and end-capped with 1,1-dicyanomethylene-3-indanone (INCN) has been first reported in this work. Through introducing multifused benzotriazole and INCN, BZIC could maintain a high-lying lowest unoccupied molecular orbital (LUMO) energy level of -3.88 eV.

View Article and Find Full Text PDF

Ladder-type conjugated structures with rigid and coplanar molecular frameworks feature longer effective conjugation, affirmative optoelectronic properties and strong intermolecular π-π interactions, which are ideal characteristics for organic photovoltaics. Here, a new "zigzag" angular-fused naphthodifuran (zNDF) based on alkoxyphenyl side chains was designed and synthesized. The distannylated zNDF building block was copolymerized with 4,7-di(5-bromothiophen-2-yl)-5,6-dioctyloxybenzo[c][1,2,5]thiadiazole and 5,8-bis(5-bromothiophen-2-yl)-2,3-bis(4-(2-ethylhexyloxy)-3-fluorophenyl)-6,7-difloroquinoxaline (Br-BT and Br-ffQx) acceptor units by Stille cross coupling reaction to form two new medium bandgap donor-acceptor polymers PzNDFP-BT and PzNDFP-ffQx, respectively.

View Article and Find Full Text PDF

Through introducing six fluorine atoms onto quinoxaline (Qx), a new electron acceptor unit-hexafluoroquinoxaline (HFQx) is first synthesized. On the basis of this unit, we synthesize a new donor-acceptor (D-A) copolymer (HFQx-T), which is composed of a benzodithiophene (BDT) derivative donor block and an HFQx accepting block. The strong electron-withdrawing properties of fluorine atoms increase significantly the open-circuit voltage (V) by tuning the highest occupied molecular orbital (HOMO) energy level.

View Article and Find Full Text PDF

Two new alkoxylphenyl substituted thieno[2,3-f]benzofuran (TBFP)-based polymers (PTBFP-BT and PTBFP-BO) were designed and synthesized. Their structures were verified by nuclear magnetic resonance (NMR) spectroscopy, the molecular weights were determined by gel permeation chromatography (GPC) and the thermal properties were investigated by thermogravimetric analysis (TGA). The two polymers showed similar UV-Vis absorption spectra with a broad and strong absorption band from 300-750 nm in solid state.

View Article and Find Full Text PDF

A novel bis-beta-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring.

View Article and Find Full Text PDF