Publications by authors named "Honghui Mao"

Article Synopsis
  • * Scientists found that a specific brain area called the ventral zona incerta (Ziv) gets active when animals groom themselves, whether it's for fun, due to feeling stressed, or from sensing something.
  • * By controlling the Ziv with special techniques, they discovered that it can either make animals groom more or less, suggesting that this brain area might help manage behaviors linked to feelings and senses.
View Article and Find Full Text PDF

Objective: Methyl CpG-binding protein 2 (MECP2) duplication syndrome is a rare X-linked genomic disorder affecting predominantly males, which is usually manifested as epilepsy and autism spectrum disorder (ASD) comorbidity. The transgenic line MeCP2 was used for mimicking MECP2 duplication syndrome and showed autism-epilepsy co-occurrence. Previous works suggested that the excitatory/inhibitory (E/I) imbalance is a potential common mechanism for both epilepsy and ASD.

View Article and Find Full Text PDF

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited.

View Article and Find Full Text PDF

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts.

View Article and Find Full Text PDF

Social dysfunction is the core syndrome of autism spectrum disorder (ASD) and lacks effective medicine. Although numerous risk genes and relevant environmental factors have been identified, the convergent molecular mechanism underlying ASD-associated social dysfunction remains largely elusive. Here, we report aberrant activation of canonical Wnt signaling and increased glycolysis in the anterior cingulate cortex (ACC, a key brain region of social function) of two ASD mouse models (Shank3 and valproic acid-treated mice) and their corresponding human neurons.

View Article and Find Full Text PDF

Posttraumatic stress disorder (PTSD) is a highly prevalent and debilitating psychiatric disease often accompanied by severe defensive behaviors, preventing individuals from integrating into society. However, the neural mechanisms of defensiveness in PTSD remain largely unknown. Here, we identified that the higher-order thalamus, the posteromedial complex of the thalamus (PoM), was overactivated in a mouse model of PTSD, and suppressing PoM activity alleviated excessive defensive behaviors.

View Article and Find Full Text PDF

Reactive astrogliosis usually bears some properties of neural progenitors. How injury triggers astrocyte dedifferentiation remains largely unclear. Here, we report that ischemia induces rapid up-regulation of Wnt2 protein in apoptotic neurons and activation of canonical Wnt signaling in reactive astrocytes in mice, primates and human.

View Article and Find Full Text PDF

Environmental factors, such as medication during pregnancy, are one of the major causes of autism spectrum disorder (ASD). Valproic acid (VPA) intake during pregnancy has been reported to dramatically elevate autism risk in offspring. Recently, researchers have proposed that VPA exposure could induce excitatory or inhibitory synaptic dysfunction.

View Article and Find Full Text PDF

Acute sleep deprivation is a common condition in modern life and increases anxiety symptoms in healthy individuals. The neuroinflammatory response induced by microglial activation could be an important contributing factor, but its underlying molecular mechanisms are still unclear. In the present study, we first found that acute paradoxical sleep deprivation (PSD) induced by the modified multiple platform method (MMPM) for 6 h led to anxiety-like behavior in mice, as verified by the open field test, elevated plus maze test, light-dark box test, and marble burying test.

View Article and Find Full Text PDF

Self-grooming is an innate, cephalo-caudal progression of body cleaning behaviors that are found in normal rodents but exhibit repetitive and stereotyped patterns in several mouse models, such as autism spectrum disorders (ASDs). It is also recognized as a marker of stress and anxiety. Mice with gene knockout (KO) exhibit typical ASD-like behavioral abnormalities, including stereotyped self-grooming and increased levels of anxiety.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a severe, long-term psychological disorder triggered by distressing events. The neural basis and underlying mechanisms of PTSD are not completely understood. Therefore, it is important to determine the pathology of PTSD using reliable animal models that mimic the symptoms of patients.

View Article and Find Full Text PDF

Ten-eleven translocation (TET) proteins, the dioxygenase for DNA hydroxymethylation, are important players in nervous system development and diseases. However, their role in myelination and remyelination after injury remains elusive. Here, we identify a genome-wide and locus-specific DNA hydroxymethylation landscape shift during differentiation of oligodendrocyte-progenitor cells (OPC).

View Article and Find Full Text PDF

Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes.

View Article and Find Full Text PDF

Background And Purpose: Quercetin is a well-known plant flavonoid with neuroprotective properties. Earlier work suggested it may relieve psychiatric disorders, cognition deficits and memory dysfunction through anti-oxidant and/or radical scavenging mechanisms. In addition, quercetin modulated the physiological function of some ion channels.

View Article and Find Full Text PDF

Single neurons, as the basic unit of the brain, consist of a cell body and processes, including dendrites and axons. Even neurons of the same type show various subtle process characteristics to fit into the diverse neural circuits. Different cell types of neurons form complicated circuits in the brain.

View Article and Find Full Text PDF

Single-fiber recording has been a classical and effective electrophysiological technique over the last few decades because of its specific application for nerve fibers in the central and peripheral nervous systems. This method is particularly applicable to dorsal root ganglia (DRG), which are primary sensory neurons that exhibit a pseudo-unipolar structure of nervous processes. The patterns and features of the action potentials passed along axons are recordable in these neurons.

View Article and Find Full Text PDF

Social deficit is a core clinical feature of autism spectrum disorder (ASD) but the underlying neural mechanisms remain largely unclear. We demonstrate that structural and functional impairments occur in glutamatergic synapses in the pyramidal neurons of the anterior cingulate cortex (ACC) in mice with a mutation in Shank3, a high-confidence candidate ASD gene. Conditional knockout of Shank3 in the ACC was sufficient to generate excitatory synaptic dysfunction and social interaction deficits, whereas selective enhancement of ACC activity, restoration of SHANK3 expression in the ACC, or systemic administration of an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-positive modulator improved social behavior in Shank3 mutant mice.

View Article and Find Full Text PDF