Publications by authors named "Honggi Min"

For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use.

View Article and Find Full Text PDF

Site-specific integration has emerged as a promising strategy for streamlined and predictable Chinese hamster ovary (CHO) cell line development (CLD). However, the low specific productivity of the targeted integrants limits their practical application. In this study, we developed a hybrid CLD platform combining site-specific integration of a transgene and dihydrofolate reductase/methotrexate (DHFR/MTX)-mediated gene amplification to generate high-producing recombinant CHO cell lines.

View Article and Find Full Text PDF

Mild hypothermia has been widely used to enhance transgene expression and improve the cellular productivity of mammalian cells. This study investigated mild hypothermia-responsive exogenous promoters in human embryonic kidney 293 (HEK293) cells using site-specific integration of various promoter sequences, including CMV, EF1α, SV40, and TK promoters, into the well-known genomic safe harbor site, AAVS1. EGFP expression driven by the CMV promoter increased up to 1.

View Article and Find Full Text PDF

All-solution processing of large-area organic electronics requires multiple steps of patterning and stacking of various device components. Here, we report the fabrication of highly integrated arrays of polymer thin-film transistors and logic gates entirely through a series of solution processes. The fabrication is done using a three-dimensional crosslinker in tetrahedral geometry containing four photocrosslinkable azide moieties, referred to as 4Bx.

View Article and Find Full Text PDF

A suitable insulating polymer material that is compatible with the fabrication process of organic transistors and has excellent electrical properties is critically required for the next-generation flexible organic electronics. In this study, using a one-step polymerization method, we synthesized two different solution-processable polyimides (PIs) incorporated with abundant trifluoromethyl groups. Not only were the two resulting PIs-termed 6FDA-6FDAM-PI and 6FDA-TFMB-PI-well soluble in organic solvents, but also they showed transparent and colorless optical properties.

View Article and Find Full Text PDF

Purpose: The objective of this study was to compare the implant stability and osseointegration of implants using a flap or flapless technique.

Material And Methods: Mandibular premolars and molars were extracted from both sides in 6 dogs. After 8 weeks, 4 fixtures were implanted using either a flap or flapless technique.

View Article and Find Full Text PDF

Vascular malformations are the most common congenital and neonatal vascular anomalies in the head and neck region. The demand for simple and esthetic vascular malformation treatments have increased more recently. In this study, two patients that were diagnosed with venous malformations were treated with sodium tetradecyl sulfate as a sclerosing agent.

View Article and Find Full Text PDF

Understanding charge trapping in a polymer dielectric is critical to the design of high-performance organic field-effect transistors (OFETs). We investigated the OFET stability as a function of the dielectric polymer stereostructure under a gate bias stress and during long-term operation. To this end, iso-, syn-, and atactic poly(methyl methacrylate) (PMMA) polymers with identical molecular weights and polydispersity indices were selected.

View Article and Find Full Text PDF

One of the major challenges to the fabrication of functionalized templates using self-assembled monolayers (SAMs) is the characterization of nanoscale defects, particularly SAM domain boundaries (DBs). In this study, an etchant was used to chemically amplify the DBs in a SAM by forming microscale pits in the underlying SiO2 layer. This approach revealed that the naturally occurring DBs acted as structural defects in the SAMs.

View Article and Find Full Text PDF

Video-assisted thoracoscopic surgery for pediatric patients has gained popularity due to better outcomes than open surgery. For this procedure, one-lung ventilation may be necessary to provide an adequate surgical field. Confirming lung isolation is crucial when one-lung ventilation is required.

View Article and Find Full Text PDF

Background: Rapid evaluation and management of intracranial pressure (ICP) can help to early detection of increased ICP and improve postoperative outcomes in neurocritically-ill patients. Sonographic measurement of optic nerve sheath diameter (ONSD) is a non-invasive method of evaluating increased intracranial pressure at the bedside. In the present study, we hypothesized that sonographic ONSD, as a surrogate of ICP change, can be dynamically changed in response to carbon dioxide change using short-term hyperventilation.

View Article and Find Full Text PDF

Background: Although ultrasonography is recommended in internal jugular vein (IJV) catheterization, the landmark-guided technique should still be considered. The central landmark using the two heads of the sternocleidomastoid muscle is widely used, but it is inaccurate for IJV access. As an alternative landmark, we investigated the accuracy of the new landmark determined by inspection of the respiratory jugular venodilation and direct IJV palpation in right IJV access by ultrasonography.

View Article and Find Full Text PDF

Keratocystic odontogenic tumor (KCOT) is a benign cystic intraosseous tumor of odontogenic origin. An infection of a KCOT is not common because KCOT is a benign developmental neoplasm. Moreover, a severe deep neck space infection with compromised airway caused by infected KCOT is rare.

View Article and Find Full Text PDF

Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB).

View Article and Find Full Text PDF

A capillary pen drawing technique, developed as a new patterning methodology for the large-area patterning and fabrication of organic electronics, provides several advantages over conventional approaches: the method is simple and versatile, there are no restrictions on the patterning shapes that could be produced, and the method can be tailored to a variety of substrates.

View Article and Find Full Text PDF

Objective: Excitatory amino acids play important roles in the development of secondary pathology following spinal cord injury (SCI). This study was designed to evaluate morphological changes in the dorsal horn of the spinal cord and assess profiles of pain behaviors following intraspinal injection of N-methyl-D-aspartate (NMDA) or quisqualate (QUIS) in rats.

Methods: Forty male Sprague-Dawley rats were randomized into three groups : a sham, and two experimental groups receiving injections of 125 mM NMDA or QUIS into their spinal dorsal horn.

View Article and Find Full Text PDF