Publications by authors named "Honggang Huang"

Constructing a built-in interfacial electric field (BIEF) is an effective approach to enhance the electrocatalysts performance, but it has been rarely demonstrated for electrochemical carbon dioxide reduction reaction (CORR) to date. Herein, for the first time, SnO/LaOCl nanofibers (NFs) with BIEF is created by electrospinning, exhibiting a high Faradaic efficiency (FE) of 100% C product (CO and HCOOH) at -0.9--1.

View Article and Find Full Text PDF

Crystal-phase engineering that promotes the rearrangement of active atoms to form new structural frameworks achieves excellent result in the field of electrocatalysis and optimizes the performance of various electrochemical reactions. Herein, for the first time, it is found that the different components in metallic aerogels will affect the crystal-phase transformation, especially in high-entropy alloy aerogels (HEAAs), whose crystal-phase transformation during annealing is more difficult than medium-entropy alloy aerogels (MEAAs), but they still show better electrochemical performance. Specifically, PdPtCuCoNi HEAAs with the parent phase of face-centered cubic (FCC) PdCu possess excellent 89.

View Article and Find Full Text PDF

Carbon dioxide (CO) adsorption and electron transport play an important role in CO reduction reaction (CORR). Herein, we have demonstrated a new class of diverse hollow ZnSnO (ZSO) through the amorphization of hydroxides to enhance CO adsorption and accelerate electron transport. The amorphization is occurred by calcination process, as indicated by Fourier transform infrared spectroscopy and Raman spectra.

View Article and Find Full Text PDF

Lattice strain engineering optimizes the interaction between the catalytic surface and adsorbed molecules. This is done by adjusting the electron and geometric structure of the metal site to achieve high electrochemical performance, but, to date, it has been rarely reported on anti-poisoned oxygen reduction reaction (ORR). Herein, lattice-strained Pd@PdBiCo quasi core-shell metallic aerogels (MAs) were designed by "one-pot and two-step" method for anti-poisoned ORR.

View Article and Find Full Text PDF

Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples.

View Article and Find Full Text PDF

Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic β-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material.

View Article and Find Full Text PDF

High-entropy alloy aerogels (HEAAs) combined with the advantages of high-entropy alloys and aerogels are prospective new platforms in catalytic reactions. However, due to the differences in reduction potentials and miscibility behavior of different metals, the realization of HEAAs with a single phase is still a great challenge. Herein, a series of HEAAs is fabricated via the freeze-thaw method as highly active and durable electrocatalysts for the carbon dioxide reduction reaction (CO RR).

View Article and Find Full Text PDF

Background: Bovine milk κ-casein-derived caseinomacropeptide (CMP) is produced in large quantities during cheese-making and has various biological activities demonstrated via in vitro and in vivo experiments. Previous studies examined protein degradation and peptide release after casein or whey protein consumption. However, whether purified intact CMP that is partially glycosylated survives intact to its presumed site of bioactivity within the gut remains unknown.

View Article and Find Full Text PDF

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 () expression in pancreatic β-cells, consequently cell death. Inhibition of β-cell iron-import by silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of knock-down is unknown.

View Article and Find Full Text PDF

Pigs with the Halothane (HAL) or Rendement Napole (RN) gene mutations demonstrate abnormal muscle energy metabolism patterns and produce meat with poor quality, classified as pale, soft, and exudative (PSE) meat, but it is not well understood how HAL and RN mutations regulate glucose and energy metabolism in porcine muscle. To investigate the potential signaling pathways and phosphorylation events related to these mutations, muscle samples were collected from four genotypes of pigs, wild type, RN, HAL, and RN-HAL double mutations, and subjected to quantitative proteomic and phosphoproteomic analysis using the TiO enrichment strategy. The study led to the identification of 932 proteins from the nonmodified peptide fractions and 1885 phosphoproteins with 9619 phosphorylation sites from the enriched fractions.

View Article and Find Full Text PDF

Protein S-nitrosylation is a cysteine post-translational modification mediated by nitric oxide. An increasing number of studies highlight S-nitrosylation as an important regulator of signaling involved in numerous cellular processes. Despite the significant progress in the development of redox proteomic methods, identification and quantification of endogeneous S-nitrosylation using high-throughput mass-spectrometry-based methods is a technical challenge because this modification is highly labile.

View Article and Find Full Text PDF

Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes.

View Article and Find Full Text PDF

Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium channel inhibitor, µ-TRTX-Hl1a, was identified from the venom of .

View Article and Find Full Text PDF

Cysteine is a rare and conserved amino acid involved in most cellular functions. The thiol group of cysteine can be subjected to diverse oxidative modifications that regulate many physio-pathological states. In the present work, a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) was synthesized to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO) and subsequent mass spectrometric analysis.

View Article and Find Full Text PDF

Objective: To understand the variation rules of schistosomiasis endemic situation before and after schistosomiasis transmission controlled or interrupted, so as to provide the evidence for the consolidation of control achievements.

Methods: In Anhui Province, 3 counties reaching the criteria of schistosomiasis transmission controlled or interrupted were selected and their historical endemic data were collected and analyzed statistically from 10 years before the schistosomiasis transmission controlled to 2008.

Results: In Tianchang City, the Oncomelania hupensis snail area was 3.

View Article and Find Full Text PDF

Unlabelled: Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy.

View Article and Find Full Text PDF

A gel-based phosphoproteomic study was performed to investigate the postmortem (PM) changes in protein phosphorylation of the myofibrillar proteins in three groups of pigs with different pH decline rates, from PM 1 to 24 h. The global phosphorylation level in the group with a fast pH decline rate was higher than that in the slow and intermediate groups at early PM time, but became the lowest at 24 h. The protein phosphorylation level of seven individual protein bands was only significantly (p<0.

View Article and Find Full Text PDF

Meat quality development is highly influenced by the pH decline caused by the postmortem (PM) glycolysis. Protein phosphorylation is an important mechanism in regulating the activity of glycometabolic enzymes. Here, a gel-based phosphoproteomic study was performed to analyze the protein phosphorylation in sarcoplasmic proteins from three groups of pigs with different pH decline rates from PM 1 to 24 h.

View Article and Find Full Text PDF

Ubiquinol-cytochrome c reductase complex chaperone (UQCC) involved in the development and maintenance of bone and cartilage is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). The expression of UQCC is upregulated in many human and animal models of height as well as other stature indexes. We have cloned the cDNA sequence coding UQCC gene in bovine.

View Article and Find Full Text PDF

The proliferation associated nuclear element 1 (PANE1) is a novel gene that is involved in immune response besides its primary role in centromere assembly. Different PANE1 transcripts show a distinct expression patterns in resting and activated CD19+ cells. In this study, we cloned and characterized the cDNA sequence of porcine PANE1, which shares high sequence identity with their mammalian counterparts.

View Article and Find Full Text PDF

Matrix metalloproteinase-2 (MMP-2) plays important roles in inflammation and immunity besides its basic role in degrading and remodelling extracellular matrix (ECM). The expression of MMP-2 is up-regulated in many human as well as animal models of inflammatory and immune diseases. In this study, we cloned the 5'-upstream sequence, 3'-downstream sequence as well as other missed genomic sequences of porcine MMP-2, the genomic structure and the promotor sequence were analyzed and found to share high similarity with those of human MMP-2.

View Article and Find Full Text PDF

Kunming mice are the most widely used outbred colony in China. Differences in biological characters and drug reactions among different populations have been observed when using Kunming mice. But the molecular genetic profiles of Kunming mice and the extent of genetic differentiation among populations are unclear.

View Article and Find Full Text PDF