Publications by authors named "Hongfang Qiu"

With the application of low frequency radar and the demand for stealth of high temperature resistant components, it is increasingly urgent to develop absorbing materials with both low frequency and high temperature resistant properties. Here, we successfully prepared various carbon/polyimide composites as low-frequency electromagnetic wave (EMW) absorbing materials by simple blending method. The well-designed mesh lap structure introduces a large amount of free space, further optimizing the impedance matching of the material.

View Article and Find Full Text PDF

Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in Δ cells that appears to result directly from impaired decapping rather than elevated transcription.

View Article and Find Full Text PDF

The histone acetyltransferase (HAT) subunit of coactivator complex SAGA, Gcn5, stimulates eviction of promoter nucleosomes at certain highly expressed yeast genes, including those activated by transcription factor Gcn4 in amino acid-deprived cells; however, the importance of other HAT complexes in this process was poorly understood. Analyzing mutations that disrupt the integrity or activity of HAT complexes NuA4 or NuA3, or HAT Rtt109, revealed that only NuA4 acts on par with Gcn5, and functions additively, in evicting and repositioning promoter nucleosomes and stimulating transcription of starvation-induced genes. NuA4 is generally more important than Gcn5, however, in promoter nucleosome eviction, TBP recruitment, and transcription at most other genes expressed constitutively.

View Article and Find Full Text PDF

Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in Δ cells that appears to result directly from impaired decapping rather than elevated transcription, which was confirmed by ChIP-Seq analysis of RNA Polymerase II occupancies genome-wide.

View Article and Find Full Text PDF

Introduction: Chongqing is among the areas with the highest rubella incidence rates in China. This study aimed to analyze the temporal distribution characteristics of rubella and establish a forecasting model in Chongqing, which could provide a tool for decision-making in the early warning system for the health sector.

Methodology: The rubella monthly incidence data from 2004 to 2019 were obtained from the Chongqing Center of Disease and Control.

View Article and Find Full Text PDF

The nucleosome remodeling complexes (CRs) SWI/SNF, RSC, and Ino80C cooperate in evicting or repositioning nucleosomes to produce nucleosome depleted regions (NDRs) at the promoters of many yeast genes induced by amino acid starvation. We analyzed mutants depleted of the catalytic subunits of these CRs for binding of transcriptional activator Gcn4 and recruitment of TATA-binding protein (TBP) during preinitiation complex (PIC) assembly. RSC and Ino80 were found to enhance Gcn4 binding to both UAS elements in NDRs upstream of promoters and to unconventional binding sites within nucleosome-occupied coding sequences; and SWI/SNF contributes to UAS binding when RSC is depleted.

View Article and Find Full Text PDF

Background: Mumps is classified as a class C infection disease in China, and the Chongqing area has one of the highest incidence rates in the country. We aimed to establish a prediction model for mumps in Chongqing and analyze its seasonality, which is important for risk analysis and allocation of resources in the health sector.

Methods: Data on incidence of mumps from January 2004 to December 2018 were obtained from Chongqing Municipal Bureau of Disease Control and Prevention.

View Article and Find Full Text PDF

Objectives: To explore the prevalence and changing trends of HIV, syphilis, hepatitis C virus (HCV) infections and risk behaviours among female sex workers (FSWs) and to provide reference and theoretical basis for formulating targeted interventions.

Design: Six consecutive cross-sectional surveys.

Setting: Chongqing, China.

View Article and Find Full Text PDF

Acute haemorrhagic conjunctivitis is a highly contagious eye disease, the prediction of acute haemorrhagic conjunctivitis is very important to prevent and grasp its development trend. We use the exponential smoothing model and the seasonal autoregressive integrated moving average (SARIMA) model to analyse and predict. The monthly incidence data from 2004 to 2017 were used to fit two models, the actual incidence of acute haemorrhagic conjunctivitis in 2018 was used to validate the model.

View Article and Find Full Text PDF

The chromatin remodelers SWI/SNF and RSC function in evicting promoter nucleosomes at highly expressed yeast genes, particularly those activated by transcription factor Gcn4. Ino80 remodeling complex (Ino80C) can establish nucleosome-depleted regions (NDRs) in reconstituted chromatin, and was implicated in removing histone variant H2A.Z from the -1 and +1 nucleosomes flanking NDRs; however, Ino80C's function in transcriptional activation in vivo is not well understood.

View Article and Find Full Text PDF

Although immunization against varicella using vaccines has been proven to be significant and effective in the past decades, varicella remains a major public health concern for many developing countries. Varicella vaccination has not been introduced into routine immunization programs in China, and varicella outbreaks have continued to occur. Taking the city of Chongqing, which has a high prevalence of varicella, as an example, this study explored the spatiotemporal epidemiology of varicella.

View Article and Find Full Text PDF

The nucleosome remodeling complex RSC functions throughout the yeast genome to set the positions of -1 and +1 nucleosomes and thereby determines the widths of nucleosome-depleted regions (NDRs). The related complex SWI/SNF participates in nucleosome remodeling/eviction and promoter activation at certain yeast genes, including those activated by transcription factor Gcn4, but did not appear to function broadly in establishing NDRs. By analyzing the large cohort of Gcn4-induced genes in mutants lacking the catalytic subunits of SWI/SNF or RSC, we uncovered cooperation between these remodelers in evicting nucleosomes from different locations in the promoter and repositioning the +1 nucleosome downstream to produce wider NDRs-highly depleted of nucleosomes-during transcriptional activation.

View Article and Find Full Text PDF

Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing ∼30% of Gcn4-binding motifs. Surprisingly, only ∼40% of the bound sites are in promoters, of which only ∼60% activate transcription, indicating extensive negative control over Gcn4 function.

View Article and Find Full Text PDF

Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells.

View Article and Find Full Text PDF

Gcn4 is a master transcriptional regulator of amino acid and vitamin biosynthetic enzymes subject to the general amino acid control (GAAC), whose expression is upregulated in response to amino acid starvation in Saccharomyces cerevisiae. We found that accumulation of the threonine pathway intermediate β-aspartate semialdehyde (ASA), substrate of homoserine dehydrogenase (Hom6), attenuates the GAAC transcriptional response by accelerating degradation of Gcn4, already an exceedingly unstable protein, in cells starved for isoleucine and valine. The reduction in Gcn4 abundance on ASA accumulation requires Cdk8/Srb10 and Pho85, cyclin-dependent kinases (CDKs) known to mediate rapid turnover of Gcn4 by the proteasome via phosphorylation of the Gcn4 activation domain under nonstarvation conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Certain Vps proteins, known for their role in vesicular protein trafficking, also regulate transcription factors at the endosome, affecting transcription elongation.
  • Yeast mutants lacking Vps34 or Vps15 show impaired mRNA production, especially from lengthy or G+C-rich coding sequences, and reduced RNA polymerase II progression.
  • These Vps mutants also demonstrate decreased NuA4 complex occupancy and impaired localization of the GAL1 gene, indicating that Vps factors might enhance transcription elongation by interacting closely with nuclear pore structures and transcribed chromatin.
View Article and Find Full Text PDF

Paf1 complex (Paf1C) is a transcription elongation factor whose recruitment is stimulated by Spt5 and the CDKs Kin28 and Bur1, which phosphorylate the Pol II C-terminal domain (CTD) on Serines 2, 5, and 7. Bur1 promotes Paf1C recruitment by phosphorylating C-terminal repeats (CTRs) in Spt5, and we show that Kin28 enhances Spt5 phosphorylation by promoting Bur1 recruitment. It was unclear, however, whether CTD phosphorylation by Kin28 or Bur1 also stimulates Paf1C recruitment.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor (GEF) for eukaryotic translation initiation factor 2, which stimulates formation of the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) in a manner inhibited by phosphorylated eIF2 [eIF2(αP)]. While eIF2B contains five subunits, the ε/Gcd6 subunit is sufficient for GEF activity in vitro. The δ/Gcd2 and β/Gcd7 subunits function with α/Gcn3 in the eIF2B regulatory subcomplex that mediates tight, inhibitory binding of eIF2(αP)-GDP, but the essential functions of δ/Gcd2 and β/Gcd7 are not well understood.

View Article and Find Full Text PDF

Methylation of histone H3 by Set1 and Set2 is required for deacetylation of nucleosomes in coding regions by histone deacetylase complexes (HDACs) Set3C and Rpd3C(S), respectively. We report that Set3C and Rpd3C(S) are cotranscriptionally recruited in the absence of Set1 and Set2, but in a manner stimulated by Pol II CTD kinase Cdk7/Kin28. Consistently, Rpd3C(S) and Set3C interact with Ser5-phosphorylated Pol II and histones in extracts, but only the histone interactions require H3 methylation.

View Article and Find Full Text PDF

Snf1 is the ortholog of mammalian AMP-activated kinase and is responsible for activation of glucose-repressed genes at low glucose levels in budding yeast. We show that Snf1 promotes the formation of phosphorylated alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha-P), a regulator of general and gene-specific translation, by stimulating the function of eIF2alpha kinase Gcn2 during histidine starvation of glucose-grown cells. Thus, eliminating Snf1 or mutating its activation loop lowers Gcn2 kinase activity, reducing the autophosphorylation of Thr-882 in the Gcn2 activation loop, and decreases eIF2alpha-P levels in starved cells.

View Article and Find Full Text PDF

The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p's functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Delta56 terminator.

View Article and Find Full Text PDF

Mediator is a multisubunit coactivator required for initiation by RNA polymerase II. The Mediator tail subdomain, containing Med15/Gal11, is a target of the activator Gcn4 in vivo, critical for recruitment of native Mediator or the Mediator tail subdomain present in sin4Delta cells. Although several Gal11 segments were previously shown to bind Gcn4 in vitro, the importance of these interactions for recruitment of Mediator and transcriptional activation by Gcn4 in cells was unknown.

View Article and Find Full Text PDF

Cyclin-dependent kinase BUR1/BUR2 appears to be the yeast ortholog of P-TEFb, which phosphorylates Ser2 of the RNA Pol II CTD, but the importance of BUR1/BUR2 in CTD phosphorylation is unclear. We show that BUR1/BUR2 is cotranscriptionally recruited to the 5' end of ARG1 in a manner stimulated by interaction of the BUR1 C terminus with CTD repeats phosphorylated on Ser5 by KIN28. Impairing BUR1/BUR2 function, or removing the CTD-interaction domain in BUR1, reduces Ser2 phosphorylation in bulk Pol II and eliminates the residual Ser2P in cells lacking the major Ser2 CTD kinase, CTK1.

View Article and Find Full Text PDF

Kinase Gcn2 is activated by amino acid starvation and downregulates translation initiation by phosphorylating the alpha subunit of translation initiation factor 2 (eIF2alpha). The Gcn2 kinase domain (KD) is inert and must be activated by tRNA binding to the adjacent regulatory domain. Previous work indicated that Saccharomyces cerevisiae Gcn2 latency results from inflexibility of the hinge connecting the N and C lobes and a partially obstructed ATP-binding site in the KD.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session53rpktk78nc0a64jnqjsfe99u27td8om): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once