Fine-grained representation is fundamental to species classification based on deep learning, and in this context, cross-modal contrastive learning is an effective method. The diversity of species coupled with the inherent contextual ambiguity of natural language poses a primary challenge in the cross-modal representation alignment of conservation area image data. Integrating cross-modal retrieval tasks with generation tasks contributes to cross-modal representation alignment based on contextual understanding.
View Article and Find Full Text PDFSensors (Basel)
September 2022
To solve the insufficient ability of the current Thermal InfraRed (TIR) tracking methods to resist occlusion and interference from similar targets, we propose a TIR tracking method based on efficient global information perception. In order to efficiently obtain the global semantic information of images, we use the Transformer structure for feature extraction and fusion. In the feature extraction process, the Focal Transformer structure is used to improve the efficiency of remote information modeling, which is highly similar to the human attention mechanism.
View Article and Find Full Text PDFIt is difficult to achieve all-weather visual object tracking in an open environment only utilizing single modality data input. Due to the complementarity of RGB and thermal infrared (TIR) data in various complex environments, a more robust object tracking framework can be obtained using video data of these two modalities. The fusion methods of RGB and TIR data are the core elements to determine the performance of the RGB-T object tracking method, and the existing RGB-T trackers have not solved this problem well.
View Article and Find Full Text PDFMost trackers focus solely on robustness and accuracy. Visual tracking, however, is a long-term problem with a high time limitation. A tracker that is robust, accurate, with long-term sustainability and real-time processing, is of high research value and practical significance.
View Article and Find Full Text PDF