Aneuploidy compromises genomic stability, often leading to embryo inviability, and is frequently associated with tumorigenesis and aging. Different aneuploid chromosome stoichiometries lead to distinct transcriptomic and phenotypic changes, making it helpful to study aneuploidy in tightly controlled genetic backgrounds. By deploying the engineered SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) system to the newly synthesized megabase Sc2.
View Article and Find Full Text PDFGinsenoside Rb1 shows a strong antioxidant effect and has potential activation effects on Akt. The aim of the present study was to investigate the protective effect of Rb1 on age-related ovarian granulosa cell injury. Ovarian granulosa cells (GCs) were obtained from 50 young women (≤30 years) and 50 aged women (≥38 years) at an IVF center.
View Article and Find Full Text PDFPolycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders accompanied by obvious metabolic abnormalities. Lower-quality oocytes and embryos are often found in PCOS women during assisted reproductive technology treatment. However, there is still no clarity about the mechanism of ovarian metabolic disorders and the impact on oocyte maturation in PCOS.
View Article and Find Full Text PDFEur J Obstet Gynecol Reprod Biol
September 2019
Kisspeptins are a family of neuropeptides that are critical for the puberty initiation and female fertility. Plasma or serum kisspeptin is mainly derived from the placenta during pregnancy and plasma kisspeptin levels significantly increase across pregnancy. Plasma kisspeptin levels could be used as a potential biomarker for the detection of miscarriage, pre-eclampsia, gestational trophoblastic neoplasia (GTN), and fetal development.
View Article and Find Full Text PDFResearch Question: Can serum kisspeptin levels 14 and 21 days after frozen-thawed embryo transfer predict the early pregnancy outcome of patients?
Design: Prospective study, with 133 patients undergoing frozen-thawed embryo transfer. Patients were divided into non-pregnant group and pregnant group (including biochemical pregnancy, singleton pregnancy, miscarriage and twin groups).
Results: Serum kisspeptin levels on day 21 were significantly higher than day 14 in singleton pregnancy, miscarriage and twin groups (all P < 0.
Background: Initially identified as suppressors of metastasis in various types of cancer, kisspeptins are a family of neuropeptides that are key regulators of the mammalian reproductive axis. Accumulating evidence has shown that kisspeptin is able to control both the pulsatile and surge GnRH release, playing fundamental roles in female reproduction, which include the secretion of gonadotropins, puberty onset, brain sex differentiation, ovulation and the metabolic regulation of fertility. Furthermore, recent studies have demonstrated the involvement of the kisspeptin system in the processes of implantation and placentation.
View Article and Find Full Text PDFKisspeptins are a family of neuropeptides that are essential for fertility. Recent experimental data suggest a putative role of kisspeptin signaling in the direct control of ovarian function. To explore the expression of KISS1 and KISS1 receptor (KISS1R) in human granulosa lutein cells and the potential role of KISS1/KISS1R system in the pathogenesis of polycystic ovary syndrome (PCOS), we measured the concentration of KISS1 in follicular fluid, the expression of KISS1 and KISS1R in granulosa lutein cells, and the circulating hormones.
View Article and Find Full Text PDFAims: The mechanisms coordinating maturation with an environment-driven metabolic shift, a critical step in determining the developmental potential of human in vitro maturation (IVM) oocytes, remain to be elucidated. Here we explored the key genes regulating human oocyte maturation using single-cell RNA sequencing and illuminated the compensatory mechanism from a metabolic perspective by analyzing gene expression.
Results: Three key genes that encode CoA-related enzymes were screened from the RNA sequencing data.
Kisspeptins are a family of neuropeptides that are critical for initiating puberty and regulating ovulation in sexually mature females the central control of the hypothalamic-pituitary-gonadal axis. Recent studies have shown that kisspeptin and its receptor kisspeptin receptor (KISS1R) are expressed in the mammalian ovary. Convincing evidence indicates that kisspeptins can activate a wide variety of signals its binding to KISS1R.
View Article and Find Full Text PDFProper reprogramming of parental DNA methylomes is essential for mammalian embryonic development. However, it is unknown whether abnormal methylome reprogramming occurs and is associated with the failure of embryonic development. Here we analyzed the DNA methylomes of 57 blastocysts and 29 trophectoderm samples with different morphological grades during assisted reproductive technology (ART) practices.
View Article and Find Full Text PDFHere, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs.
View Article and Find Full Text PDFECAT1 is a subunit of the subcortical maternal complex that is required for cell cycle progression during pre-implantation embryonic development; however, its exact function remains to be elucidated. Here we investigated the expression of ECAT1 in human ovarian tissue, oocytes and pre-implantation embryos and assessed its function by using RNA interference (RNAi) in oocytes. ECAT1 mRNA was highly expressed in human oocytes and zygotes, as well as in two-cell, four-cell and eight-cell embryos, but declined significantly in morulae and blastocysts.
View Article and Find Full Text PDFObjective: To investigate PPARGC1A promoter methylation and mitochondria DNA (mtDNA) content in the leukocytes of women with polycystic ovary syndrome (PCOS) and analyze the relationship between these indices and metabolic risk for women with PCOS.
Design: Cross-sectional study.
Setting: University hospital.
Polycystic ovary syndrome (PCOS) is a common reproductive disorder that has many characteristic features including hyperandrogenemia, insulin resistance and obesity, which may have significant implications for pregnancy outcomes and long-term health of women. Daughters born to PCOS mothers constitute a high-risk group for metabolic and reproductive derangements, but no report has described potential growth and metabolic risk factors for such female offspring. Hence, we used a mouse model of dehydroepiandrosterone (DHEA)-induced PCOS to study the mechanisms underlying the pathology of PCOS by investigating the growth, developmental characteristics, metabolic indexes and expression profiles of key genes of offspring born to the models.
View Article and Find Full Text PDFChemokine receptor type 4 (CXCR4) has been suggested to regulate cell migration and invasion in human somatic cells. However, its role in human oocytes and embryos has not been investigated directly. Here we show that CXCR4 mRNA was initially expressed at the 4-cell stage, and its expression gradually increased until the blastocyst stage, whereas its protein was detectable only after the 8-cell stage.
View Article and Find Full Text PDFStudy Question: Does Sirt3 dysfunction result in poor developmental outcomes for human oocytes after in vitro maturation (IVM)?
Summary Answer: Inefficient Sirt3 expression induced decreased mitochondrial DNA copy number and biogenesis, and therefore impaired the developmental competence of human IVM oocytes.
What Is Known Already: Cytoplasmic immaturity in IVM oocytes may lead to reduced developmental competence. Mitochondrial dysfunction results in the accumulation of free radicals and leads to DNA mutations, protein damage, telomere shortening and apoptosis.
Objective: One of the major obstacles to ovarian tissue preservation is delayed angiogenesis that leads follicles lost after transplantation. The aim of the present study was to investigate the effects of bFGF and VEGF on heterotopic transplanted ovarian tissue using a mouse model.
Methods: Female mice underwent bilateral ovariectomy.
Classic polycystic ovary syndrome (PCOS) is a high-risk phenotype accompanied by increased risks of reproductive and metabolic abnormalities; however, the local metabolism characteristics of the ovaries and their effects on germ cell development are unclear. The present study used targeted metabolomics to detect alterations in the intermediate metabolites of follicular fluid from classic PCOS patients, and the results indicated that hyperandrogenism but not obesity induced the changed intermediate metabolites in classic PCOS patients. Regarding the direct contact, we identified mitochondrial function, redox potential, and oxidative stress in cumulus cells which were necessary to support oocyte growth before fertilization, and suggested dysfunction of mitochondria, imbalanced redox potential, and increased oxidative stress in cumulus cells of classic PCOS patients.
View Article and Find Full Text PDFHuman pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells.
View Article and Find Full Text PDFIntroduction: Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial.
Methods: hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods.
The present study evaluated the influence of hyperandrogenism on oocyte quality using a murine PCOS model induced by dehydroepiandrosterone (DHEA) and further explored the effect of metformin treatment. Female BALB/c mice were treated with a vehicle control or DHEA (6 mg /100 g body weight) or DHEA plus metformin (50 mg /100 g body weight) for 20 consecutive days. DHEA-induced mice resembled some characters of human PCOS, such as irregular sexual cycles and polycystic ovaries.
View Article and Find Full Text PDFFertilisation is the first step in embryonic development, and dynamic changes of key genes may potentially improve assisted reproduction techniques efficiency during this process. Here, we analysed genes that were differentially expressed between oocytes and zygotes and focused on cytokinesis-related genes. Plk1 and Dctn3 were identified as showing dramatic changes in expression during fertilisation and were suggested to play a key role in inducing aneuploidy in zygotes and 8-cell embryos.
View Article and Find Full Text PDFImplantation failure and early pregnancy loss have been reported to be closely related to the quality of mammalian oocytes; however, the pregnant outcome of embryos from in-vitro matured (IVM) oocytes remains unknown. In this study we examined spindle assembly and chromosome segregation during differentiation, and the duration of IVM of mouse oocytes. The resulting implantation and pregnancy outcomes were analyzed to clarify the relationship between the spindle and chromosomes of IVM oocytes and implantation and early pregnancy.
View Article and Find Full Text PDF