In this paper, we described a straightforward one-step chemical method for the synthesis of semiconductor quantum dots(QDs)-block copolymer brushes functionalized graphene oxide(GO) fluorescence nanohybrids. The azobenzene-terminated block copolymer poly(N-isopropylacrylamid)-b-poly(styrene-co-5-(2-methacryoylethyloxymethyl)-8-quinolinol)(PNIPAM--P(St--MQ)) was modified on the surface of GO sheets via host-guest interactions between β-cyclodextrin-modified GO and azobenzene moieties, and simultaneously CdSe/ZnS QDs were integrated on the block copolymer brushes through the coordination between 8-hydroxyquinoline units in the polymer brushes and CdSe/ZnS QDs. The resulting fluorescence nanohybrid exhibited dual photoluminescence at 620 nm and 526 nm, respectively, upon excitation at 380 nm and LCST-type thermo-responsive behavior which originated from the change in the PNIPAM conformation in the block copolymer brushes of GO sheets.
View Article and Find Full Text PDFThree bis-cyclometalated cationic Ir(iii) complexes , and with an ester substituent at the 4-position of the phenyl ring on the 2-phenylpyridine (ppy) have been synthesized and fully characterized. The emission maxima of ester-substituted Ir(iii) complexes show a notable blue-shift compared to the parent complex [Ir(ppy)2(phen)](+)PF6(-) (phen = 1,10-phenanthroline). The influence of an ester group on the photoelectric properties of the Ir(iii) complexes has been investigated systematically.
View Article and Find Full Text PDFA family of isostructural, chiral supramolecular networks have been obtained in the solid state by exploiting second sphere coordination interactions in the self-assembly of achiral tris amines and with tetrahalometallate and halide ions. Quantum-Mechanical (QM) calculations specific for solid phases provided additional insights into the intramolecular and packing interactions which determine chirality, pointing to a direct effect of the methyl groups of the central benzene ring.
View Article and Find Full Text PDF